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Reaction diffusion models in one dimension with disorder
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We study a large class of one-dimensional reaction diffusion models with quenched disorder using a real
space renormalization group meth@ISRQG which yields exact results at large time. Partidles., of several
speciep undergo diffusion with random local bidSinai model and may react upon meeting. We obtain a
detailed description of the asymptotic stafes., attractive fixed points of the RSRGuch as the large time
decay of the density of each specie, their associated universal amplitudes, and the spatial distribution of
particles. We also derive the spectrum of nontrivial exponents which characterize the convergence towards the
asymptotic states. For reactions which lead to several possible asymptotic states separated by unstable fixed
points, we analyze the dynamical phase diagram and obtain the critical exponents characterizing the transitions.
We also obtain a detailed characterization of the persistence properties for single particles as well as more
complex patterns. We compute the decay exponents for the probability of no crossing of a given point by,
respectively, the single particle trajectorie® (r the thermally averaged packeE)(The generalized persis-
tence exponents associatedrnt@rossings are also obtained. Specifying to the prodes®\—0 or A with
probabilities ¢,1—r), we compute exactly the exponedg’) and«(r) characterizing the survival up to time
t of a domain without any merging or with mergings, respectively, and the expo@a(t3 and ya(r)
characterizing the survival up to timeof a particleA without any coalescence or with coalescences, respec-
tively. 0, ¢, and 6 obey hypergeometric equations and are numerically surprisingly close to pure system
exponentgthough associated to a completely different diffusion lepgitne effect of additional disorder in
the reaction rates, as well as some open questions, are also dis¢@d€¥8-651X%99)15005-0

PACS numbds): 05.70—a

[. INTRODUCTION realizations. It can be introduced in the models in several
ways, e.g., in the reaction rates or in the single particle dif-
fusion. One can expect that it will strongly modify the be-
Reaction diffusion processes are of wide interest in physhavior of the system in some cases by amplifying the role of
ics, chemistry, and biology1]. In physics they present a spatial density fluctuations. These effects are interesting, but
relatively simpler case of nonequilibrium stochastic pro-difficult to study analytically because of the present lack of
cesses with nontrivial behavior. Traditionally they have beermethods, beyond mean-field approximations or perturbation
studied via mean-field-type methods.g., law of mass ac- theory, to treat the dynamics of such disordered systems.
tion, local chemical kinetigs[2]. However, in sufficiently Even in the absence of quenched disorder, there is an
low spatial dimension, particle density fluctuations becomeapparently unlimited variety of behaviors in reaction diffu-
dominant and mean-field methods become invEBl The  sion systems. The more complex ones, such as oscillatory or
role of fluctuations in these processes has thus been studietiaotic behaviors, become possible for a large enough num-
for a while, but has received renewed attention recddfly  ber of specie$12—15. In simpler cases, attempts have been
as new exact results in one dimensidi] and systematic made to identify possible universality classes, and a wide
renormalization group studies have apped®dOne inter- class of models with finite reaction rates, amenable to field
est of these models is their relation to phase ordering kinetictheoretical treatments, has been studiisg|17]. For instance,
via the “coarsening” of domain structures evolving towards branching and annihilating random wall8ARW), i.e., re-
equilibrium[6]. In some cases, these can be seen as reacti@ttions such aA—mA andA+ A—0 or A—0, exhibit tran-
diffusion processes for defects, for instance domain walls irsitions from inactive(no particle to active states, which
one dimension oK Y-type vortices in two dimensions, which were found to be either in the universality class of directed
diffuse and can annihilate or coalesce upon meeting. Theggercolation[18—20 (odd number of offspringsor in the
coarsening processes have also been much studied recentip-called parity conserving clagsven number of offsprings
especially in an effort to characterize their so-called persist17]. This was confirmed by exact results in one dimension
tence(or survival or first passag@roperties for single spins, [21]. Related types of models describe epidemy propagation,
domains, or global magnetizati¢id—11]. such asA+B—2B (with ratek), and eitheB— A (recov-
Although many results are now available for reaction dif-ery) or B—C (immune (rate 1#) were also studied via RG
fusion processes in homogeneous situations, comparative[22] (see[23] for review). The effect of quenched disorder
little is known on their dynamics in the presence of quenchedas been studied in this class of BARW models, via random
disorder, which is expected to play a role in many physicakatesk(x) and~(x) but with limited success as the RG flows

A. Overview
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to strong coupling23]. As for directed percolation with dis- characterized by a fixed transition probability matrix which

order, it is still a largely open problefi24—-26. satisfies

There is a simpler class of homogeneous models without
branching(i.e., without particle production such asA+A E WE =1, )
—0, A+A—A [27,28, A+B—0 [29,30, etc., which has K 12

still nontrivial behaviol{31]. One interesting phenomenon is N )
that in low enough dimension, the process becomes diffusiofne matrixWy . can be extended to includg=0 by de-
limited rather than reaction limited. Indeed particles in closefining

proximity react quickly and the remaining particles are typi- " "

cally separated by a length related to the pure diffusion Woxr = Wi 0= Sk ©)
length Lo(t) ~(Dt)¥2 This leads to a decay of specie den-
sity, e.g.,na(t)~t~9 for d<2 in the case ofA+A—0,
slower than the mean-field predictian(t)~t~* valid for
d>2 (for A+B—0 a related argument leaams,(t)~t~ 9

for d<<4) [29]. These types of results for such models in the
pure case are well established from heuristic arguments, nu- A+A—0D with probability r,
merical simulations, perturbative R@7,28,33, and in some
cases rigorous methodi83,31]. It is now interesting to in-

vestigate how disorder will modify these behaviors. With | this case there are only two statks: 0 corresponds to no
disorder, models in this class are easier to study than thgarticule present/(Dandk=1 to one particule presert.
BARW-type models, although it is still a difficult task. The The transition matrix is thetWS .= W3 ,.=W? =W3 =0,
reactionsA+A—0 andA+B—0 have been studied using w2 —w! =1, andW?,=r,W! =1—r. ’ '
perturbative field theoretic RG methods for particles diffus- \we will obtain results for processes within the above
ing in random flows, either in two dimensiof4,3§ orina  class(1) and study some specific examples. We will restrict
special hydrodymamic flo36]. As can be expected from ourselves to symmetric reaction ratesf o =W k. -
the study .Of single particle dllffL!SIOI’] In such f.|0\{B7,38j|, fb\symmetric rates, depending on the side from which the two
the behavior should be qualitatively different in the case o pecies come in contact, can be definedinl and can be
potentialdisorqler, which tef‘ds '.[0 segregate the particle_s andiudied by the same mefhods. We will mostly consider reac-
slow the reacnor(and t_he d|ffu5|o_m than fo_rhydrodynamlc tion diffusion processes with onlyfanite number of possible
flows, which tend to mix the particles and increase the eﬁecétates(or species Processes with an unbounded number of
t@ve rea_ction ff”‘tefa”d lead to hyperdiffusignThe competi- states i=<0) can also be studied by the present method, and
Eon W?'((:jh grlses Whentl bg:z 2c03r2pon§r_1tsdilr2e_preggnt h%e will give some examples. Classifying the much larger
een studied very recently [34] and ind=2- € [39]. variety of complex behavior possible in that case is beyond

]I(:zem?;]kably, ';]hef one;]dlmetns;)cmtgl pg)(é)lemt;egms gune f e scope of the present study. Other extensions include ran-
rom the reach of such perturbative methods and No 9615 mness in the reaction rates, which we will briefly discuss

neric result is available at presdd0] in that case, hence the
interest of th t studv. Indeed.dis 1 onlv potential in the end.
e s Sy, naeec.an & ony poeia Up to now we have not specified the way in which par-

d|so_rder can exist and.|s known to lead to uItrgsIow Slngleticles diffuse, nor the reaction rates. Let us first concentrate
particle dlffus_|on de_scnbed by a strong d|sorc(_ee., ZE10  on the proces&4) and recall the known results in the case of
ter_nperatur)sflxgd point[41]. To make progress 'd:.l re- ure diffusion(i.e., homogeneous hopping ratewhich has
quires developing nonperturbative techniques, which is thgeen extensively studied. It is of particular interest in one
aim of the present work. dimension since it is also a model for zero temperature do-
main growth in the ferromagnetigstates Potts modéWwith
B. Model Glauber dynamigs wherer=1/(q—1) [11]. The caseq
In this paper we study a broad class of reaction diffusion=2 (Ising) corresponds to walker§.e., domain walls al-
models where particles diffuse on a one-dimensional latticavays annihilating when they meet ang= to walkers al-
and can react or annihilate upon meeting. Apart from theitvays coagulating42]. It is known that the reaction rate can
reactions the particles are noninteracting. More specificallype chosen infinitdimmediate reaction upon meetingith-
each site of the lattice can be in one of several possibl@ut changing the universality class, and the same will hold
“states,” labeledk=0,1, ... n—1. k=0 corresponds to the here in the presence of disorder, hence our general choice of
empty state with no particle present at that site. model(1). For allr the concentration of particleSis known
=1,...Nn—1 corresponds to the presence of particles oft0 decrease as
different types. When two particleg.e., statesk;>0 and
k,>0 meet, they react and give another stateith a prob-

f"‘b'"ty Wi, ks 3 k m_ay be the emF’W s_talle=0, correspo.nd- where the (-dependentcoefficient is expected to be univer-
ing to an annihilation. The reaction is thus a stochastic progg| [e.g., c(1)=(87) Y2 [43]]. More detailed properties,
cess such as persistence, have also been studied. The probability
. - K S(t) that no particleA (domain wal) has crossed a given
ki+kp—k  with probability Wi, k, @) point O up to timet has been shown to decay as

for any k,k’, which is the property expected for an empty
state A+ 0— A with probability ).

One prominent example will be identical particlés
which react upon meeting as

4
A+A—A with probability 1—r.

na(t)=~c(r)(Dt)~ "2, ©)
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S(t)~Lo(t) =", (6) u @

where Ly(t)~+/t is the characteristic length ané(r) the
so-called persistence expone§(t) also corresponds to the
probability that a spin has never been flipped up to ttre
the Potts model. The exact expressiondff) was obtained
in [11,44). The domain size distribution has also been com- (b)
puted for this process if5]. Two new independent expo-

nents, ¢ and &, were introduced and studied [46,47] to ‘
characterize the persisten¢surviva) of domains for this A

model, but as of now no exact result is available for these F F=F-E+F
exponents. The concept of persistence properties was e» F '
tended to other observables, finite temperature, and studied E
variety of other models: persistence for global order param- h ’
eter[10], spin block persistend&8], generalized persistence
and large deviationf49,50, and persistence for fluctuating
interfaceg 51]. 1 1, 15
sponding to random local bias. The generic model for thismetr;(.)d' the ﬁondbw'tg tT)e smallest bzr.rm‘”_':? ISI eliminated,
type of disorder is the Sinai model where each particle per[esu fing In three bonds being grouped into a single one.
forms Arrhenius diffusion in the same energy landsclpe
where the local random forcdd,—U,,; are independent
random variables of zero averagee restrict the present
analysis to zero global biasVarious analytical results are
known for the single particle Sinai modé&2-5§. Diffusion

is ultraslow asx~L(t)=(Int)?. Recently we have reexam-
ined this model59,60 using a real space renormalization
group method(RSRQG which vyields exact results at long
time. In the present paper we apply the RSRG method t
study reaction diffusion of the typ@) for particles in a Sinai

erties. We will characterize a broad set of universality
classes, containing all reactions of typ®. The reaction
times (provided they are finifedo not affect any universal
quantity, so that we can consider the reactions as instanta-
neous for practical purpose. As discussed@f], there are
other single particle diffusion models with short range cor-
related disorder in one dimension apart from Sinai’'s model
gniversality class, such as random barriesgmmetric hop-
ping rates or random wells. For interesting behavior to oc-
landscape. Some of the results have already appeaf&8in cur, however, algebraically broad dis_tribut_ions. are required
r{rom the start. Some results for reaction diffusion processes

gl;fr;(;,?c?r? I\énggévev\?fr@”? rde?;a'cl)idF;g?g&egro;rhgegﬁ SC tio with this type of single particle diffusion have been obtained
' in [68].

concerning the single particle diffusion aspects of the prob- The outline of the paper is as follows. In Sec. Il we detail
lem (which we will only sketch, referring the reader [160] the RSRG method f'Pstl?ecall'n kno nlres Its '.n the case of
for detail9. Note that we consider here only models Wherea single particle in’SIec A {hgn devr\gving ;Jhe IIQSRG equa-
all particles share the same diffusion propeiitg., see the tion for reaction diffusion models in Sec. Il B. The fixed

same landscape and have the same diffusion coefficient oints of this equation, and some physical properties of the

Thus this does not include reaction diffusion models such agorres onding asvmptotic states. are studied in Secs. 1l C and
Ising domain walls in a random field, for which a specific P g asymp ' '

treatment is necessary and which are studied5®,61]. Il D, respectively. Section Il is devoted to a detailed analy-

Similarly, relations to other problems such as disordered'Sis of the dynamics near attractive or repulsive fixc_ad points
quantum spin chain§62—6§ or disordered free fermion and of the convergence towards the asymptotic states.

models are discussed j69,60. In particular, we have cho- Thrqughout the paper we apply our res'ults'to the pro6éss
sen to discuss our present results exclusively in terms ol?Ut Iln Sefc. IV we dlslcugs so\;ne aptpl(ljcatlons_ tto other ex-
reaction diffusion dynamics, and not in their equivalent for-?i;nsp g?ac?tio?]r(z/ﬁ?izﬁéir?s tﬁg.convgfugicl:n ySp:r;SeISrr?cr)]rCeetgcr:?fr)]ir-
mulation as(non-Hermitian 1D quantum model¢see[66] ' . . s .
for details of such relations in the pure casginally, note cal but useful details are contained in the Appendixes.
that an exact RG has also been applied to the problem of
coarsening of the pure 1@* model at zero temperature for Il. RSRG METHOD FOR REACTION DIFFUSION
which persistence exponents have been computéd]. AND ASYMPTOTIC STATES

As for the single particle problem, the RSRG method al-
lows us to compute a number of quantities, and, remarkably,
even some which are not known for the corresponding pure The model for the diffusion of a single particle in one
model (e.g., the domain persistence exponeétand ).  dimension can be defined, with no loss of generdb§, as
This makes the disordered case all the more interesting tthe Arrhenius diffusion in a “zigzag” potentidll (x) repre-
study. We find that reaction diffusion processes in a Sinasented in Fig. ). It consists in a set of bonds, each bond
landscape are strongly controlled by the ultraslow diffusion(betweenx; andx;, ;) being characterized by an energy bar-
e.g., the relevant length scale is the diffusion lengtt) rier Fi=|U;—U;,4| [where U;=U(x;)] and a lengthl;
~(Int)?, but that they still possess nontrivial reaction prop-=|x;,1—X;|. The energy landscape is chosen by choosing a

A. RSRG for Sinai landscape and single particle diffusion
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pair of bond variable& |, independently from bond to bond, of the renormalized valley at scale=T Int which contains
from a distributionP(F,l) normalized to unity. the starting pointO, since with high probability it will be
The RG procedure, which captures the long time behavionear to that poinf52]. Upon proper rescaling of space and
in a given energy landscape, is illustrated in Figo)land  time this approximation becomes in fastactasI” tends to
consists in the iterative decimation of the bond with the -+, This defines what we will call the “effective dynam-
smallest barrief{59], sayF,, and to replace the three bonds ics” in the following and is illustrated in Fig. 1. This allows
1,2,3 by a single renormalized bond with barrief=F,  us to recover the scaling~(Int)? for the single particle
—F,+F3 and lengthl”’ =1, +1,+15. The new variables re- diffusion as well as many other exact results detailed in
main independenfrom bond to bond. To write the corre- [59,60]. Since it is customary, when studying reaction diffu-
sponding RG equation it is convenient to introddtas the  sjon processes, to compare densities of reactants with a char-
smallest remaining barrier at a given stage of the decimatioacteristic scale of diffusion, we give here the the exact ex-
and the rescaled variableg=(F—T)/T and\=1/T2. The pression for the single particle root-mean-square
RG e[qua]ltion for the probability distributiof69] P (#,\) displacement, or “diffusion length” at large time:
reads[59

[Tor—(1+7)d,— 2N, —3IP"(7,\) V(x3(t) ~%\/§1T2(Int)2. (12
:Pr(or')*kpr('1')*7],}\PF('1') (7)

and coincides with the one derived &3] for the closely To stgdy reaction diffusion processes it will be necessary
related problem of disordered quantum spin chains. Thé&0 consider “valleys” (two consecutive bonds sharing a
symbol« , denotes a convolution with respectitconly and ~ ¢0mmon potential minimuin We thus slightly generalize

% , With respect to both; and . The probability distribu- the abov_e RG equatioli7) to follow_ the distribution of
tion is normalized to unity agg “d»f g “d\P (7,\)=1. renormalized valleys. The RG equation for the valley prob-

aye . . . F . .
The landscape is characterized by the large scale varian@P!IY distribution P¥(7,,7,) at scalel’ in rescaled vari-
of the potential ables (71,7,) reads

(Ui=Uj)2=20]l; | ® TP (m.m)

with |, the distance from site to sitej, which is exactly =[(1+92)d,,+ (14 72) 9, + 21P (91, 72)
preserved by the RG. Thus we will set=1 in the follow- r r r r
ing. Restorings simply amounts to a rescaling of lengths, P (71, )% 5, P (0 ) FPEC0*, PRC ), (19)
and in particulare drops out of all(universal ratios of
lengths that we consider later. As shown[@8,64], the RG ~ where we have omitted.e., integrated overthe lengths for
equation(7) leads at largd™ (using Laplace transformgo  Simplicity. The large time ') behavior of this equation can
the following fixed pointP* (7,\): be studied similarly. Valley distributions which have the de-
coupled form P'(#5.,7,)=P"(7,)P'(7,), where P'(%)

B Js I satisfies the bond RG equati¢r), are of course solution of
P*(n,N)=LT3,| = h\/—e_ mscoths | (9 the RG equation for valleyl3). The subspace of such de-
sinhvs coupled distributiongcalled decoupled subspace in the fol-
lowing) is thus preserved by RG. Since the initial condition
is uncorrelated, the RG flow defined by EG3) remains in
this decoupled subspace, and converges towards the fixed

Thus for largel’ one finds that the average bond length
and the number of bonds- per unit length ar¢70], respec-

tively, point P* (74, 7,) =P*(5,)P*(7,) =€~ "~ "2, This conver-
1 2 gence result extends to the case of small correlations be-
r==I% np=—. (100  tween valley sides as will be discussed below.
2 2 It was shown in[64] that the convergence towards the

. bond fixed pointP*(7)=e" 7 is like 1/I" with eigenvector
The renormalized landscape allows us to study the dy(l_ n)e~ 7. Thus the convergence towards the valley fixed

namics of a s?ngle_ walker st_arting from a given poitat point P* (7,,7,)=e" "1~ "2 within the decoupled subspace
t=0. The decimation of barriers smaller than is of the form

I=Tint (11)

c
-7 — — -7 e
corresponds to the elimination @fogarithmig time scales (e o r (1=m)e 7t

shorter than the Arrhenius tintdor the particle to cross the
barrier. We are choosing everywhere time units such that the
(nonuniversal microscopic attempt time scalg be set to
unity [arbitrary units can be recovered by settidy
=TIn(t/ty) in what follows [71]]. Since at long time(i.e., —e MM
largeI") the renormalized landscape consists entirely of deep

valleys separated by high barriers, a good approximation to

the long time dynamics is to place the walkerthe bottom and is also as 1/ with eigenvector (2 ,— 7,)e™ "1™ 72,

X

C
e~ 24 F(l_ 7)€ T2

..o (19

C
1+ 7 (2=m=m)



1216 PIERRE Le DOUSSAL AND CEILE MONTHUS PRE 60

where

Pic= J Pk(71,72) (17)
71272

andnp is the number of remaining bon¢0) per unit length
at scalel'=TInt. We stress that the RG equatioh5) is
—_— more complicated to analyze than Ef3) since it cannot in
general be factorized into bond distributions.
However, it turns out that there is still a simple subspace
of distributions which is exactly preserved by the RG equa-

) _ - tion (15). It is the subspace of functions of the sum
FIG. 2. (a) Macroscopic state of the reaction diffusion process: | 7o

each renormalized valley is either empty=0) or contains a par-

ticle of type k>0 (b) at time scalet such that the barrieF=T PL( )=HL (9= 11+ 7,) (18)
=TInt is decimated, the statparticle k; in the decimated valley kL1772 KT 2

moves to the neighboring valley and reacts whthto producek  \yhere the function$d,(7) satisfies

with probabilitthlykz, as the two valleys are merged into a single

renormalized one containirg I‘&FHE( n)=[(2+7)d,+ 2]H£( n)

lkZ k

KT r
B. RG equations for reaction diffusion + Wi, oHi ()% 5 Hig (), (19

We now turn to diffusion reaction models of tyg#) in  \yhich conserves the normalization 3,pk

one-dimensional landscapes with random local biases. =[%dy WEKHE(ﬂ) This subspace plays an important role
. . . . — O .
. Fr.0m the results on the_ dynamics of.a smgle_ par_tlc_le N &, the following. Already one sees that both the fixed point
Sinai landscape recalled in the preceding section, it is cleal-»,-», 4,4 the leading eigenvector {2, — n,)e "~ 72
1 2

that one can study most of the properties of the initial reac- - : ; -
tion diffusion problem by following its evolution under the gzéggalllgeearlzed landscape RG equatid®) belong to this
g .

effective dynamics. It also becomes obvious that one mu

now consider valleys, and the species contained in these val-

leys. At the decimation time scalé=TInt in some places

in the system, two valleys will merge into one and the reac- We now determine the fixed point solutions of the RG

tion (1) governed by the rates matri¥ will take place. This equation for the valley distributiond5). We already know

process is illustrated in Fig. 2. The errors made by this apthat the sun Py (71,7,)=P"(71,7,) converges towards

proximation are expected to become again smaller at largghe fixed point of Eq.(13) P*(7,,7,)=e (7" 72) which

time, as will be discussed later on. describes the landscape. It is thus natural to look for fixed
The general method to study the procéssis thus to points of Eq.(15) of the following form:

associate to each valley the specie which it contains, which is

one of several possible statés (k=0 being the empty Pr(71,72)=pt P*(n1,m)=pie (m"72, (20

statg. A convenient initial model is thus one where each

valley and its content is statistically independent and charadvherepg =0 andX,p; =1 by normalization. Plugging this

terized by a probability distributionPE(nl,nZ) with form into Eq.(15) leads to a consisterit-independent solu-

SkPr(71,72) =P (51,7,). It remains so under the RG. tion if the py satisfy the condition

The effective dynamics is described by the RG equation:

C. Fixed points of the RG equations and asymptotic states

PE =Wi_ i, Pk PE, (2D)
L arPi (71, 72)
r Note that any solution of this equation satisfi@spriori
=[a+ 771)‘9771+ (1+ ’72)‘7r/z+2]Pk( 71,72) SPr =0 or 1, as a consequence of EB). Thus apart from
K r r the unphysical solution of Eq21) where allp; vanish, all
+ Wi il Pig (72,)% 5,Pi,(0,) other spoll)jtions are automatigally correctly Frjllé)rmalized.
r r In general, Eq(21) has several solutions and thus there
TP 0% 5, P )] (19 are sgveral fixec?ﬁ)oi)nts to the valley equatidhS). Clearly
some of these fixed points are attractive and correspond to
where summation over repeated indices is implied. The sumpossible large time asymptotic states for the reaction diffu-
mation overk yields back the valley RG equatigh3). Since ~ sion process while other fixed points are repulsive. In some
the average length of a valley i$_12, the total concentration Cases several attractive fixed points can coexist and lead to a

nk(t) of a given specid (the total number ok particles per ~nontrivial phase diagram. _ .
unit of length is given as The stability of each fixed point, as well as their conver-

gence property, will be studied in detail in the next section.
L Here we just mention one important result. The dynamics in
_ the vicinity of a fixed pointpy is determined by the follow-
t)=-nrpy 1 : " ; k
(=3 NPk (16) ing stability matrix:
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Mki:Wtr P (22)  further characterized by computing universal amplitudes. In
. pure models a commonly studied amplitude is the product of

specie concentration by the diffusion volume. In a disordered

ciated eigenvectordd, pé— « Forn—1 reacting spe- model one has more choices of Qefinitions, but we will define
g kjPj = MaPx - g sp an amplitude as if39]. Here we find the exact result for the

cles (in _addmon to th_e empty stqtek=0), M is an .following universal amplitudgassociated to specle:
n-dimensional matrix with non-negative elements. One ei-

genvalue is trivial, being simplyw;=1 of eigenvector 1 fe1

pﬁ“locp’,f (21). The other n—1 eigenvaluesu, («a A= lim nk(t)\/(xz(t))zp: _\ﬁ_ (24)
=2,...n), which can be complex in general, have a t—oo 6 5

smaller modulus, due to the Perron-Froebenius theorem. We

will focus in the following on simple enough processesThis gives, for instanceA(r)=1/(1+ r)%@ for the pro-
where allu, are real, but we will also give example of more cess(4), i.e., A=0.29102 . .. forA+A—0 studied in39]
general reaction diffusion where complex eigenvalues arisgy perturbative method&3].

(e.g., reactions with cycles _ . _ From the statistical independence of valleys in an

Let us consider here only fixed points with @l, being  asymptotic state, information about the spatial distribution of
real. The result of the next section is that, in that case, ghe species can also be obtained. For instance, one can define
given fixed point if attractive is the—1 eigenvaluesu,  “domains” in the simplest case as intervals between par-
<1/2 fora=2,...n.ltis repulswe if at least one of these ticles (i.e., between nonempty staté&s:0, irrespective of
me>1/2 (and is then repulsive along the correspondingtheir content We can now compute exactly the distribution
eigendirection o of the size of “domains.” From the above form of the fixed

For example, in the case of the reaction diffusion procesggints, the normalized distributiddy(1) of domain sizes in
(4), there are two solutions of E421) and thus two fixed gp asymptotic state takes a scaling for® ()
points. One is the empty state=(p; =1,pA=0) and the = (1/I'2)D* (A =1/I"?) which can be computed as follows.
other isS=(pg =r/(1+r),pa=1/(1+r)). The stability ma- The above RG equation for valley distributiofis) can
trix associated td= is simply the 2<2 identity matrix(i.e.,  be readily extended t®,(7%;,7,,\1,\,) Which takes into
u1=1=u,) and this fixed point is thus repulsive. The ma- account the rescaled lengths=1,/T'2, \,=1,/T'2 of the
trix associated to the stat& reads Mg=((r/r+1r/r two bonds of the valley, extending E(). The generalized
+1),(/(r+1),1/(r + 1)) with eigenvaluespu;=1 and u, fixed point(20) reads
=0. The fixed pointSis thus attractive and corresponds to
the asymptotic state which represents the large time behavior P (71,72, 1,X2) =pj P* (71, ) P*(72,)2), (25
of the system.

In fact, the reaction diffusion procesd) possesses an WhereP*(7,\) is the fixed point solutior{9) of the bond
interesting property: the outcome of a sequence of reactio8G equation. A domain as defined above is thus a set of
does not depend on the order it was performed. We call thesgonsecutive empty valleys between two occupied valleys, to-
processes “associative processes.” They have the proper§ether with one bond in each of the occupied valléyse
thatM?=M, i.e., »=0,1. Some properties of these associa-Fig. 2. Since in the asymptotic state valleys are statistically
tive processes are detailed in Appendix B. independent and are either empty=(0) with probability
Po P* (N 1) P*(\;) [where P*(\)=[,P*(\)] or contain a
particle k#0) with probability (1-p§)P*(A1)P*(\,),

, one easily obtains the Laplace transformDdf(\) as
We now study some physical consequences. Each attrac-

We denote byu,, the eigenvalues a¥l, and byp;* the asso-

D. Physical properties of the asymptotic states

tive fixed point corresponds to a possible large time behavior s +o0

of the system, i.e., an asymptotic state. If there are several Dp3(5)= Jo dx e **D*(\)

attractive fixed points, the one chosen by the system will

depe_nd on the |n.|t|al value of the parameténsainly the (1—p3)P*(s)2 1—p}

specie concentrations = = , (26)
From the results(20) and (10) we obtain that in an 1-psP*(s)?  coskys—p

asymptotic statécharacterized by a set pf solution of Eq.

(21)], the density of specik behaves at large time as where we have used the explicit for(®) for the fixed point

bond distribution. Formuld26) can be inverted and yields

1 . pk the distribution of rescaled domain sizes:
W= 3P = (23 . 2
Dr (M) =tana X (at+nme M5 (27)
where we have restored the microscopic attempt time scale 0 n=-e
to [72]. Note that this resul23) represents the leading large o
time contribution; subleading correctior(svhich become _ tam 2 msin(2 m)e*mz’”
dominant only ifpy =0) will be determined in the next sec- B JmA32 m=e “«
tion. Interestingly, this leading behavior is independent of (28

the initial concentratioriprovided it is in the basin of attrac-
tion of the fixed point This universality property can be with a«=arccogg .
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This can be applied, e.g., in the case of the pro¢dss probability of speciek of the valleys just being decimated at
Substitutingpg =r/(1+r) in Eq. (28) yields the distribution I', one can obtain a closed coupled equation by integration of
of distances between neighboring walkétsNote that the Eq. (15), which reads
case where walker#\ always coalesce upon meeting ( r r " T r
=0,p0=0) corresponds ta— /2 and in this limit Eq.(28) Farpe=2[—px(0)+ Wi, Pk, (0)Py,]- 3D
becomes
It is then tempting to set, as an approximatiph(0)=p}. .

. 5 ) P This would be correct at any of the fixed poir0), but
DpSZO(R)=n:E_w [2A7(n+1/2)°—1]e since we are studying convergence to a fixed point, it is an
(29) approximation which amounts to neglecting the dynamical
correlations between the deviations in the specie concentra-
tion and in the distribution of barriers heights. For this reason
we call it the “uniform approximation.” It yields the follow-
ing approximate closed RG equation for l]h%:

+ o

— 2 § (_1)m+1m2e—m2/)\
\/;)\3/2 m< )
(30)
Larpi=2(=pic+ Wi 1,Pi,Pic,)» (32
It is interesting to compare the res(#8) concerning the
disordered case with the result of Derrida and Zefig for
the case of homogeneous hopping rates. For small domal
sizes {—0), the distribution vanishes much faster in the
disordered casgas~ A ~%%exp(—1/\)] than in the pure case
(as~N\). For large domain sizes\(~x), both have expo-
nentially decaying behavidexcept forqg=+, i.e.,r=0 in
the pure case In addition, in the present case the consecu-
tive domains lengths are statistically independent, which i
not the case for the pure system.
The above calculation is easily generalized to compute th
distribution of relative distances between two walkers of a .
given species, simply by substitutingog —1—pjy in the Lopfe=2(=fi+2Myo i), (33
above formula28).

which preserves the normalization conditiaip,=1. This
gbproximate flow has the same fixed poip& p; as the
true one(21). This equation, remarkably, is reminiscent of a
“mean-field type” rate equation, except that the role of
“time” would be played by the variable IA{Int).

The relaxation of Eq(32) towards any of these fixed
oints is studied by setting£:p§ +f£ and linearizing for
he small perturbatiorf, around the fixed poinp} . It
gields, in terms of the matri# introduced in Eq(22),

and thus the convergence towards the fixed point has com-
1. DYNAMICS NEAR FIXED POINTS AND ASYMPTOTIC ponents behaving a8 "+, where the exponents are given in
STATES terms of the eigenvalueg, of the matrixM as A ,=2(1
—2u,) With =2, ... n.

In this section we study the dynamics near the possible So this “uniform approximation” would indicate that a
fixed points of the valley RG equatidattractive and repul-  fixed point is stable if all Reg,)<1/2 for all =2, ... n,
sive). and unstable otherwise. Remarkably, this stability criterion

We will first focus strictly on the effective dynamics ex- coincides with the exact reswithen the eigenvalues are real
actly described by the RG equati¢h5), and mention some as we will now show, even if the naive convergence eigen-
possible corrections in the real dynamics at the end of thealuesA , are not correcfthey are “renormalized” to larger

section. absolute values
For the effective dynamics we will solve the problem in

two steps. As mentioned above, the maivbin Eq. (22) and
its eigenvalueg , control the asymptotic dynamics. Interest-
ingly they readily provide an approximation of the dynamics, Up to now we have studied the convergence of the land-
which we will call the “uniform approximation,” which is scape along13), and the convergence of th@ within a
interesting as it allows us to classify the spectrum of eigenuniform approximation assuming' (0)=p".

perturbations and, in the case of real eigenvalues, already We now study the full dynamics near a fixed point solu-
allows us to see whether a given fixed point is stable otion of the full reaction diffusion equation&5). We will

B. Second step: Full dynamics near a fixed point

unstable. indeed find that there are some correlations between devia-
In a second step we will obtain the exact results for thetions in total occupation probabilitiegrom the fixed point
spectrum of eigenperturbations. concentrationsand deviations in the barrier distribution pro-

file (from the simple fixed point shape™7), resulting in
deviations with respect to the uniform approximation.

_ _ _ B We thus consider a perturbation around the fixed point of
It is natural to define the total occupation probability of the form

speciek at scalel'=TInt as py=/,,,,Pk(71,72). The ; ;

difficulty of the problem comes from the fact that it does not Pi (71, m2) =[P +Cic (771, 772)]e” (1772 (34)
satisfy a closed equation. However, if one also introduces

Pk(0)=1,,Pk(0.72) =/, Pi(71,0), i.e., the occupation and linearize the equation for the perturbatiig 7, 7).

A. First step: Uniform approximation
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Tarcy (71, 72)

=[(1+91) 3, = 1+ (L+ 72)d,,— 721Ck (71, 72)
(35

7lld Al ’ r ’
My, k, o 07 [ck (7" m2)+ ¢ (7",0)]

- f:zd 7'[ci (n1,m) + ¢ (0,7)] ], (36)

where we have used the symmetry of iMeand the defini-
tion of the matrixM (22).

Note that in the end we are interested in the behavior o

the species proportions

r

pﬁf Pk(71,72)=P§ + €k,
71,72

where

37

€= f (71, mp)€ (mF72),
N1:72

The normalization condition of course implies thae
=0.

Decomposing:{(nl,nz) upon the eigenvectors, corre-
sponding to the eigenvalueg, of the matrix M as
Cck (71, 72) == .C (71, 72)p, we obtain decoupled equa-
tions for the coefficientsg( 71,72),

L arcy(71,72)
=[(1+ 1) 3, = 1+ (14 92)d,),— m21C(71,72) (38)

Ma( fﬁldﬂ’[CE(n’.712)+C£(77’,0)]
0

= | Py elinn )+l | @9

For a givenu,, we look for solutions behaving as,
~TI'~®« and determine the exponedt, as a function of the
eigenvalueu,, . Here,a priori both ., and®, can be com-
plex.

Before we study this equation for genejalwe will first
study the simpler casgs=0 andu=1. Note that for asso-
ciative processes this will be sufficient.

1. Study for y,=0
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and thus the convergence of proportiqn% towardspy is
governed by Eq(37),

€= fo dnlfo d7,Ch(my, )€ (Mt 72

= f d)ﬁf dY2C£0(Y1 yo)e vitya),
(T/Tg) -1 (ITg) -1
(41

So for generic initial perturbatiors£°(7;l,772) that are not
xponentially growing asy; ,—, we obtain that the con-
ergence towards the fixed point is exponential'inNote

that here this exact result is very different from the naive

approximation which would predict a convergencelas'
with A=2. To understand why this is so, one can compute
from the exact solutiot41) the ratio
r *
P(0)—pc T
T T (42)
Pk~ Pk 0

which is found to grow withI". This is why the uniform
approximation is particularly bad for this case where it pre-
dicts a power law instead of the exponential convergence in
.

2. Study for p,=1

To study the dynamic&38) in the caseu,=1, it is useful
to introduce the functionhi(71,72)=0,.,.Co(n1,72),

since it satisfies the closed simpler equation
Corhy(n1, m2) =[(1+ 72)d, + (14 92)d,,
+2=m—mlhy(71,72) (43

that gives after integration from an initial condition Ia§

hl;( N1,72)=

r 4
1"_) e [(I'Tg) = 1](n1+ 72+2)
0

X hlo

[e3

! 1 1F 1 1
F_o( +71)— T_o( t72)—-1],

(44)

and thus for initial conditionhgo( 71, 1>) that are not expo-
nentially growing aty, ,—, we obtain that the functiohz
converges towards 0 exponentiallylin This means that the
perturbationscl; converge exponentially id" towards the

This case is important for naively stable fixed points ofdecoupled subspace

associative processe$which have all u,=0 for «
=2,...N—=1). The I'-dependent equatiof38) with u«,

(1, m2) =¥ m) + (o). (45)

=0 can be integrated out explicitly starting from its initial We now study the convergence towards the fixed point in

value atl’y,

2
c(my,m) = F_o) e U(I/To)=1](m+ 75+2)

Lo

o

XC

r

that decoupled subspace to see if there are solutions behav-
ing aswl;( 7)~T ~Pay (7): the equation fory,(7) reads

_(I)alzba( 7]):[(1+ 77)(?77_ 7/]',%( 7’)

+2 fo"dn'waw'wwa(oy (46)
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The only well-behaved solutions are found to be 4.0 .
35 ]
C,=+1, ()=, (0)(1-7n), (47) sor 1
25 |- 1
20 . 8
©,==2, ()= (0)(1+27). (48) v b S ]
. . ) i T ]
The first solution corresponds to the convergence Hs 1/ 107 SN
of the landscape discussed previously. This is not surprising 05 RN ]
since the linearized RG equati¢id) is exactly Eq(38) with 0.0 - .
n=1. Note that Eq(44) shows that small correlations be- 05 [ e ]
tween barriers in the same valley decrease exponentially fas a0l A ]
in I" towards the subspace of statistically independent distri- ] e
. ) ) . - 15 | w1
butions. Since this landscape eigenvector satlsfaﬁs - . S
= [ 0y n,Cul 1, m2)€” (72 =0, it does not affect the spe- 2% 05 1.0
cies proportiongy. . It is the second eigenvector in E@8) L

which is relevant for the reaction diffusion processes since

r .
€,#0. It corresponds to the unstable eigenvalgeowth as \514e 4. It vanishes ap=1/2 and diverges ag—0. The result of

2 . . . .
I'?) associated to a naively unstable fixed pdieg., of an  the uniform approximation is plotted as a dashed line.
associative procegsNote that in that case, the unstable ei-

genvalue foundb=—2 coincides with the naive valua We now discuss the behavior of the solutions of this equa-
=2(1—2u)=—2 of the uniform approximation. tion. One must distinguish two cases.
Physically, this eigenvalue can be understood for, e.g., the

process(4). The unstable fixed point is the empty stde
with pp=1, pa=0. Now if one starts at’ very close to the
fixed point, there are very fevx and their number should not ~ Let us start withu real. As mentioned above, one must
vary at first, as they will rarely meet. This is indeed exactlyhave u<1. For u=1, Eq. (52) reduces tob*+®—2=0,

FIG. 3. Plot of the exponenb (® ™) as a function of the eigen-

4. Real

what the above result says, namely, which admits the two rootd® =1 and® = —2 and one thus
recovers the eigenvaludg8). Equation(52) continues to
1 1 In2t admit two finite roots whem belongs to the intervad <pu
nA(t)zanp,Fpm p}§+[pA(t’)—p,’§]ﬁ <1, which we denoted*(u) and ® () [with ®*(1)

=1 and ® (1)=—2]. The behavior of these roots as a
(49 function of u is plotted in Figs. 3 and 4. Ag is decreased
, . from 1, ® (1) increases and diverges when-1/2" while
and using thak hasp, =0. ® ~(w) increases from-2 to® ~(1/2)=0. For u<1/2, Eq.
(52 admits only one finite rootb(u)=® («) which is

3. Study for general u positive and withd®(1/2)=0 and® (u)— +~ asu—0".

We now study the case of a genega] . It turns out that Again we can see from the exact solution above why the
one can find the solution of the original E@8) under the  uniform approximation is not valid. In terms of the dominant
form a mode, the ratio

r 17—

Co( M1, m2) =1 "aH (m1+ 77), (50) a0

where the functiorH ,(z) satisfies the differential equation
25t

0=(2+2z)H"(2)+ (P, +1—2)H,(2) +(2u,—1)H (2)
20t
(51)
o

together with the boundary conditionH2,(0)+® ,H ,(0) 15 ¢
=0. I

The only well-behaved solution at— is the confluent 1.0 |
hypergeometric functiotl ,(z2)=U(1-2u,,3+P,,2+2), » ;
and the boundary condition at=0 determines the possible 05 - _
exponentsd , that should satisfy @'(1-2u,,3+®,,2)
+dU(1-2u,,3+P,,2)=0. Using the identity 0.0
zU'(AB,z—(z+1-B)U(A,B,z) =—U(A-1B-17), ~o5 1.0
this equation for® , reduces to 38

FIG. 4. Plot of the exponeri ™ as a function of the eigenvalue
U(-2u,,2+P,,2)=0. (52 w. It diverges atu=1/2.
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have a fixed point naively stabJevith Re(w) < 1/2] which is
in reality unstabldwith Re(®)<0].

C. Asymptotic dynamics: Conclusion

Thus we have solved the problem of the dynamics near
the asymptotic states of the for(@1) for arbitrary reaction
diffusion process. Let us summarize the results.

When the eigenvalugs, of the matrix M (22) are real
the stability of the fixed point is determined by the following
naive argument: a fixed point is stableyif,<1/2 for all «
=2,.... Thedecay exponent® , are obtained in terms of
the u, as

®,=F[u.l,

where the functior[x] is defined implicitly by the single
root of the equationU[—2x,2+F[x],2]=0 (here 0<x

(54)

FIG. 5. Stability diagram: the solid line in the complex plane of < 1/2) and represented in Fig. 3.

w delimits the region of instability Re(®) <0 to the right of the
line] from the region of stability Re(®)>0 to the lefi.

)~ pi fo dzH,(z)e”

pPr(0)—p

r_ % o
P Pk f dzzH,(z)e *?
0

b, (53

goes at largéd’ towards the finite limit,, found to be bigger
than 1 whenu<1/2. One can check that setting] = p;
+f andpj(0)=p§ +bfL. in Eq. (31), one obtains that the
relaxation towards the fixed point is now lif&"*«(®) with
No(b)=2[b—(b+1)u,]. Sinceb,>1, the correct expo-
nent ® ,=\,(b,) is bigger than the naive exponent,
=N, (b=1).

5. Complex u

Next we turn to compley.. The matrixM being real, if it
has complex eigenvalues they will come in pajts,and u*
corresponding to complex conjugate eigenvectpgsand
(pg)* . In the uniform approximation they will combine as
fi =T "Re@ar cogIm(A ,)InT+ ¢ and correspond to os-
cillatory (growing or decaying solutions [where A=2(1

In terms of these exponents, the large time behavior for
the concentrations of the species is found to be

1 r
ne(t)= Enrpk , (55)
T S (TInt) %« ’
2 1+ ¢ + (57)
n = P s
" 20n2\ T T(nt)

where theO(1/T") correction innp comes from the conver-
gence of the landscap@4]. In addition, there are corrections
to Eqg.(55) which decay must faster, exponentiallylin(i.e.,
algebraically in timg The by are constants, depending on
the initial condition. The formuld55) can also be used to
relate two late times. If the system is very near the
asymptotic state at’, with p,(t') =pg + e, Eg. (55 holds
att with bf=€,pg(TInt")"®«, where we recall that thpy
are the eigenvectors & and e,== ,€,Px -

For practical applications it is useful to note that ratios of
concentrations of different species involve only the expo-

—2u) is compley. This situation happens in cyclic reac- nents®,. On the other hand, because of the fastpy the
tions, examples of which will be given below. Within the relaxation of the concentration of a single speki¢o its
uniform approximation the fixed point is stable to this per-asymptotic form is controlledprovided p; >0) by the ex-
turbation if Rew)<1/2 and unstable otherwise. This, how- ponent min(1P) [where® is the minimum of all exponents
ever, turns ouhot to be correct. Indeed the correct exponent® , appearing in the corresponding formygb) for n,(t)].
® (now complex is determined by the above E2) asso- The formula is even more interesting in the cage=0 (i.e.,
ciated tow. One hasb(u*)=d(u)*, and to each pair of if the speciek disappears in the reactipeince then the first
M, w* one can associate orfer two in some casepair of  correction becomes the dominant decay and one has at large
®,d* also corresponding to oscillatory solutions. The oscil-time thatn,(t)~1/(T Int)>"®. Examples of such cases are
lation frequency in the I’ variable is now given by Intp),  studied in Sec. V D.
and the stability being now determined by Bg([ Re(®) Let us stress again that the difference between the exact
>0 corresponds to a stable eigenperturbation, whiledRe( value®, and the uniform approximation value, is due to
<0 corresponds to an unstable ¢ne the fact that near the asymptotic states the rqﬁ&s())/p{
Interestingly, RéP(u)) is a decreasing function of differ from 1, i.e., the valleys to be decimated do not have
Im(x)>0 as it is increased from 0. Thus the region of sta-the average distribution of species: there is a nontrivial mix-
bility in the complexu plane isdifferentfrom the one in- ing between valley heights and concentration of species,
ferred from the uniform approximation. It is represented inmissed by the naive argument, and responsible for the non-
Eqg. (5). One notes that for complex eigenvalues one caririvial relaxation exponents found here.
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When some eigenvalugs, of the matrix M(22) are com-  interesting questions which go slightly beyond our present
plex the fixed point is stable provided all, lie in the part analysis.
of the complex plane on the left of the curve represented in

Fig. 5. The specie concentrations then relax with oscillations A. A dynamical phase transition
as Let us consider the system involving two specieandB
1 by and the empty state O:
n(t)=5nr| P+ > pr——
a=2n (TInt)™ e A+A—A, B+B—B, A+B—O0. (59)
The solutions of Eq.21) for the fixed points are the
xcog Im(®,)IN(TInt)+¢&+---|. (58 ut a2 xed pol

empty stateE=(px=0,p5=0,p;=1), the A phase px
=1,pg=0,p4=0), theB phase px=0,pg=1,p5=0), and
Finally, in the case wherg=1/2 [or more generally on the fixed pointC=(pi =3%,p5=3.Pg =3)-
the line Re()=0], linear analysis is insufficient to deter-  The A phase and th® phase are attractive fixed points
mine the evolution of the system, and one must study the fullvith eigenvaluesu, ;=0 corresponding to asymptotic expo-
nonlinear RG equatiolil5), which goes beyond the present nential decay in"'=TInt (i.e., a power law in timgof the
study[75]. other specie. The empty state is a repulsive fixed point with
To conclude this section, let us recall that the results deeigenvaluesu; , 3=1. The critical pointC is attractive for
rived above concern, strictly speaking, the effective dynamsymmetric perturbatiodp,= dpg= — do/2 corresponding to
ics described by the RG equatioh5). As was discussed in  eigenvalueuz=0, but unstable with eigenvalye,=3 for
great details in Ref[60] for the single particule diffusion, any dissymetric perturbatiofp,+ dpg . This corresponds to
there are correct'lons in the regl dynamlcs,'wnh respept to thg,e exponent ® ~(2)=—0.761258 [the other root is
effective dynamics. Indeed, in the effective dynamics the . , . - ,
whole thermal packet jumps &t Int=TI" over a barrierT, ®7(5)=3.51853]. Since it is globally attractive over the

while in the real dynamics typically a fraction of a thermal criticall manifold, this fixed point controls the dynamical
packet[which can be written as % exp(—e LT omyT transition from theA phase toB phase. Thus we conclude

has not yet jumped at tinte Since the distribution of barriers thatif one starts with a system Afand the in almost equal
becomes broader and broader, this generates correctiof@ncentrations, the differencipa(t) —pg(t)| (or equiva-
which at large time are only subdominant for most quantities®Ntly the relative concentrations @ and B) grows with

[at mostO(1/T')] coming typically from rare events such as /M€ as

degeneracy of orde©(T) between neighboring barriers. _ - v —

They become dominant only for certain quantities, such as [PA(D=Pe(D]~(InD)",  »=0.761258 (60
the width of the thermal packet, which have vanishing leador, equivalently, the differences of absolute concentrations
ing order in the effective dynamics. In R¢60] the correc- decay agN,(t) —Ng(t)|~(Int)"2*7, i.e., more slowly than
tions to first order inO(1/") were evaluated and found to the decay of both concentrations Afand B, which itself
originate from three rare event&) valleys with degenerate pehaves as (It) "2 The system eventually reaches a broken
minima, (b) almost degenerate barriers, af@l valleys just  symmetry state where eithAror B predominates after a time

being decimated with a barriéi+ € (see Fig. 7 of60]). t,, which scales as
A similar detailed study of the rare events in the presence
of reaction processes can be performed but goes beyond the tp~ ec(t’)\pA(t’)—DB(t’)I’l’”, (61)

present paper. With similar arguments ag60], we do not
expect any correction to the leading order of the quantitiesvhere t’ is a (shortej reference time scale and(t’) a
computed in this paper. In principle, subdominant correc{t’'-dependentconstant. Note that the uniform approxima-
tions could add to the subleading terms computed abovdion would predictv=2/3 significantly smaller than the exact
e.g., in Eq.(55). They are certainly at most of ordéx(1/1")
(and thus cannot affect any decaylas® with ®<1) but it

is likely that they are even of higher order. Indeed most of
these correctionge.g., (b)] come from single particle diffu-
sion and can be reabsorbed into the global fantor Other
events[such as(@)] cannot affect specie concentrations. Al-
though this point deserves further study, it is likely that the
corrections from the real dynamics to the convergence to
asymptotic states obtained in this section are subdominant.

IV. EXAMPLES OF PROCESSES

Up to now we have only applied the general results to the
process(4). We give here several examples of other pro-
cesses, starting with a process which exhibits a dynamical
phase transition and to which the general results apply di- FIG. 6. Dynamical phase diagram of the reactib8) studied in
rectly (see Fig. . Then we present other cases which raisethe text.
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result. Finally, the asymptotic final decay of the minority
phase is fast, exponential Ih(asu =0 at eitherA ot B fixed
points.
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L'orpg=—24d,,f(pa.Ps) (67)

with f(pa,Ps)=PaPs(1—pPa—Ps).- AS a consequence, all

Restraining from giving further examples among the largestarting points where the three concentratiops,bg,pc)

number of possible processes with similarly interesting be

are nonzero belong to closed flow linp"™™(I") of con-

havior to which our general results readily apply, we nowgiant value of (pa,pg). Thus in the uniform approximation

turn instead to cases where open questions remain.

B. Reaction with a marginal fixed point

Let us now consider the reaction

A+A—0, B+B—B, A+B—O0. (62
The fixed points are the empty stapx =0,p5 =0,p5
=1) which is unstable with eigenvalugs ;=1, theB phase
(pPA=0,p5 =1,p5 =0) which is fully attractive with eigen-
values u,35=0, and the fixed pointU(px=3,ps=0,04
=3) which is attractive withuz;=0 along the axigpg=0
and marginal withu,= 1/2 for any perturbatiodpg>0. Go-
ing beyond the linear approximation, we find in the uniform
approximation thaf" grp5=2(pg)?, i.e., a small initial pro-

. r
portion p,° grows very slowly as

(63

and thus the time scalg, where the proportion oB be-
0
comes finite grows likd" =T Int,;~e"(?"&) for small pgo.
In the real dynamics, the exponedbi = 1/2) being 0, we
also expect a kind of marginal behavior near the fixed poin

U. A full study of this behavior is an interesting question
which goes beyond the present paper.

C. Cyclic reactions and complex eigenvalues

Let us study the reaction

A+A—A, B+B—B, C+C—C, (64)

A+B—B, B+C—C, C+A—A. (65)
The solutions of Eq.(21) are the three pure phasgs
=1,pg=1pc=1 and the mixed statpy=pg=pc=3. The
pure phasep,=1 is stable =0) in the directiondpc
=—6pa>0, and unstable /£=1) in the direction dpg
—8pa>0. The mixed fixed pointpy=pg=pc=3 has
complex eigenvalue&2,3=(1ii/\/§)/2, leading to purely
imaginary naive exponents, ;= *i 2/\/3. As can be seen in
Fig. 5, the exact convergence exponedts;, solutions of
Eqg. (52), have a negative real part, and thus the fixed poin
pPa=pPg=Pc=3 IS also unstable This shows that the

3

asymptotic behavior of the system is more complex than

being described by a fixed point of ty21).

In fact, going back to Eq.32) of the uniform approxima-
tion, and eliminatingpc=1—ps—pPg, We obtain that the
flow equations for the two variablespf,pg) take the
“divergence-free” form

L'arpa=20p,f(Pa.Pa), (66)

the asymptotic behavior is always cyclic.

This, however, does not carry to the real dynamics, be-
yond the uniform approximation, since one can check that
these cyclep"™™(I")e~ 71~ 72 arenot solutions of the RG
equation (15). Thus the question of determining the
asymptotic behavior of this problem is still open. A more
complex cyclic solution, or a new nontrivial fixed point, are
among the possibilities.

We close this section by noting that one can also expect
from[13,12,14 that reactions with a large enough number of
species have chaotic solutions at the level of the uniform
approximation. It would be interesting to investigate whether
such chaotic solutions could also exist in the RG and in the
exact dynamics of these disordered reaction diffusion prob-
lems.

D. Reaction with an infinite number of states

We now consider the much studiékH-B— inert reac-
tion, which, in the absence of disorder, is known to lead to
segregationi30] of the two species,

A+A—A+A, B+B—B+B, A+B—0. (69

We introduce the notation8y=0, A,=mA, andA_,
=mB (m=1). The possible contents for a valley are now
the A,, with me Z and thus their number is infinite. The
reaction rules become with these notations

Ak+ Ap_)Ak+p . (69)

So for the RG procedure, it is convenient to associate to
each valley an auxiliary variabla representing the contents
of the valley, and to write the RG equation for the probabil-
ity distribution P''(z;,z,;m) where the RG rule for the aux-
iliary variable m upon fusion of valleys simply reads
=m;+m,. We can use the result of the Appendix [64]

(for the same RG rule of an auxiliary variapknd obtain the
scaling
(m?)~T?2, (70)

Thus we find that charges of ord€r=T Int of both signs
(i.e., groups of size of ordd?=T Int of particles of the same
specig will accumulate near the bottofin a packet of typi-
cal sizeO(1)] of each renormalized valley. These packets

ill be separated by a large distance of ord&ir(t)%. The
otal number of particles will still decay, as T/{nt). This
asymptotic state thus still presents strong features reminis-
cent of the segregation observed in the pure ¢86¢ By
contrast with the pure model, here several packet8 oén
also be found in successive neighboring valleys.

V. PERSISTENCE PROPERTIES

We now study persistence properties in the reaction dif-
fusion models defined in Sec. | B. As explained in the Intro-
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duction, one is interested in computing probabilities that
some type of event has not occured between time Otand
The decay with time of these probabilities usually involves U,
new nontrivial exponents which characterize the nonequilib-
rium dynamics. Since they integrate over time the behavior
of the system, they are usually hard to obtain analytically,
even in the pure systems. For reaction diffusion models in a
random environment the following types of persistence prob-
abilities can be defined, and will be studied in the following
corresponding sections.

(i) The simplest persistence observable is the probability
I1(t) over runs and environments that a given paistO has Uy
not been crossed by any particle between time 0 tainda ()]
given run. The decay dfl(t),

(t)~1(t)~° (72)

wherel () is a characteristic length of the diffusion process,
here given from Eq(10) asl (t)=3(T Int)?, defines the per-
sistence exponertt. This is the definition used in this paper,

even when referring to the pure case, whéifg)~ft, Absorbing

whereas another frequent definition is in terms of the power zone

of t. Since here the diffusion is logarithmic, we choose ev- U0

erywhere in this paper the more general definitidfh) both

for pure and disordered problems. FIG. 7. lllustration of the RG in the presence of an absorbing

(ii) In the presence of quenched disorder one can alsboundary.(a) The boundary at sitxk=0 can be represented by
study the probabilityf1,(t) over environments that a given settingUy=—. (b) Renormalized landscape, with the absorbing
point x=0 has not been crossed by any of the thermallyzone(see text
averaged trajectorieéx(t)) of the particles. Similarly the

decay oﬂ'[th(t):l (t) Y defines the exponeﬁ One expects

in general thatdy< 6 and here we find that these two expo-
nents are quite different.

(i) More generally, one can define the probability that a
given pattern present at time 0 has survived up to tinvee
study the example of the survival of domaifi®., intervals
between particleswhich in the pure case was shown to lead
to the definition of two new exponenfg6] called 5 and :

S characterizes the probability that a domain has survived up
to time t without merging with other domains, angl char-
acterizes the probability that a domain has survived up t
time t with mergings with other domains.

(iv) Finally we study the exponent and ¢, character-
izing the probability that a particl& has survived up to time
t, without any coalescence and with coalescences, respe
tively.

in Ref.[60]. The first bond is by definition always ascending
with an infinite barriefand thus can never be decimatadd
represents an “absorbing zongSee Fig. J. If the smallest
barrier in the system dt is the third bond from the boundary

or further, the rules are identical to bulk RSRG. If the small-
est barrier is the second bond, i.e., the first descending bond,
the procedure consists in eliminating the first valieg., the
second and third bondvhich is merged with the absorbing
one.

Since the reaction rules of the species upon merging val-
leys are unaffected by the boundary, at a giveall renor-
Malized valleys in the bulk are distributed independently
with P£(771,7Iz), which satisfies Eq15). We now explicitly
check that the first renormalized valley also has the same
gi_stribution. Indeed the probabilitR, (7, ') that the first
renormalized valley hasy(, ' k) satisfies the RG equation

[Cor—(1+9)d,~(1+ 7)),y —2]Ri(n,7) (72
A. Persistence in a single run

1. No crossing by any particles: Exponergt , r
9 Dy any pariees: = ~Pl(n.7) [ 47,3 RL(0n0
We start by computing the probabilify(t) thatx=0 has K’

not been crossed ny particle up tat. We consider a rather K r, r,

general reaction diffusion process with a vacuum statk 0 ( Wi kR (0% 5Pl 7') (73
=0) and occupied statgsvith particles in themy k=1. To . . .

solve this problem we can consider separately the two half + Wi, kR, (7, -)% 5Py (0,-)

spacesx>0 andx<0 and study the problem of a semi-

infinite system x>0) with an absorbing boundary a&t=0 Rl / j d Pl (0 74
(absorbing for the statds=1). < 7') 772% o (0772), 749

For diffusion in a Sinai landscape in the presence of an
absorbing boundary at=0, one defines a new RSRG with where the first term corresponds to the decimation of the
slightly new rules: the boundary RSRG, explained in detailsecond bondwhich results in the increase of the absorbing
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zoneg and the old second valley becomes the new first renorFor r =0 where the particles always merge and occupy all
malized valley. The third and fourth terms correspond to thevalleys, we recover the half-space expongm(r=0)=3
decimation of the left bond of the second valléhe loss corresponding to the decay exponent of the probability of no
term must be explicitly written on the left-hand side to keepreturn to the origin for a single Sinai walker obtained in
the distributionR correctly normalized to unijy One can [59,60.
now check thaR.(7,%')=PL(7,7') is a consistent solu- _
tion. 2. Number of particles absorbed by a wall:

To compute the persistence exponent, we now define Generalized persistence

Vi(#7,7") as the probability over all environments that the A generalization of the persistence exponeéntan be
boundary atx=0 has never been crossed by a walker bedefined for reaction diffusion models on the semi-infinite
tween time 0 and’ and the first renormalized Valley has line x>0 in the presence of an absorbing boundarx:ao_
(7,m',k) atl'. It satisfies the RG equation There one can compute the probabil@y(n) that exactlyn
particules have been absorbed by the wall up to tintgen-

[Faf_(lJr77)(971_(1+77,)‘971’_2]\/{(77'77/) (75) eralizing the approach of Ed75), we obtain thatQr(n)
satisfies at largd’
=Pl [ amvioim FarQr(n)=(1-p)[Qr(n-1)-Qu(m)], n=1,
K\l r ) (84
W Vi (0% P (7)) (76)
I'arQr(0)=—(1—p3)Qr(0). (85)
Wi i Vi (7,)% P (0,0) , , _
The RG equation for the generating functioQr(z)
:EnZnQ (n),
~Vi(n.7") f 7.3 Py (072) (77 '
K I'drQr(2)=—(1-po)(1-2)Q(2), (86)

similar to Eq.(72) except for the first term, which carries the thus leads to the deCEQF(Z)Nrf(lfpo)(lfz)_ Introducing
restriction that the second bond can be decimatdyl ifthe {4 rescaled number of absorbed particules
first renormalized valley is empfigince, if it contains a par-

ticle, this particle gets absorbed by the wall, i.e., crosses the n
origin). A consistent solution is simply =T (87)
r Yy r ’
Viclm ' )=vrPi(m,7') (78 and using as ifi59,60 the saddle point method, we find after

a Legendre transform that the probability distribution
prob(g) behaves as

Lapve=—vp f (E P (0.72)~Pi_o(072) | (79) prob(g) ~T" 2@ (88)
72\ k'

with

with the generalized persistence exponent
We now use the fact that the system reaches for large

an asymptotic state corresponding to an attractive fixed point Ak
(20), and this leads to the asymptotic decay 20(9)=(1=pg)—g+gln 1-p3) (89)
VFNF_(l_pS)- (80) For g=0, one recovers the persistence exponent of the

) - ) half-spacew(0)= 60/2, where# is given by EQq.(82). w(Q)
Since the probabilityI(t) that the poinx=0 has not been pas a zero minimum a,= (1—p,) which is thus the value
crossed by any particle up to timen the infinite line is the  {hat g takes with probability 1 a§ — o,
square of the corresponding probability for the semi-infinite
problem, we obtain n . _ N
m_(l pg) Wwith probability 1 as t—oe.

TI(t)~v2~1(t)~* (81) (90)

ith 1(t)=1% 2 i -
pvét:t_l (t)=2(TInt)"and the result for the persistence expo B. Persistence of thermally averaged trajectories
As was discussed in detail in Rg60], thermally aver-
6=1-pg . (82)  aged trajectories of a single Sinai walker follow the effective
dynamics which we now use to study their persistence prop-

As an example, we show the result for the procébs erties. Figure 8 illustrates the difference in the persistence

wherepg =r/r+1: properties between the single run dynamics studied in the
preceding section and the effective dynamics of thermally
0 :L 83) averaged trajectories. Let us consider the case of a valley

T ol+r’ with a right bond of barrief” such that the point=0 lies to
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0.9 r i
0.8 d
0.7 .
0
0.6 .
FIG. 8. If the point ax=0 (indicated by a dotted linehappens 05 - . |
to lie in a renormalized valley as shown on the left figure, it will be ) TS
crossed many times by a single patrticle, while it may not be crossec T N
at all by the thermal averadge(t)) before it jumps over the barrier 04 T
on the right. This is not the case in the situation shown on the right
figure, where typically no crossing af=0 occurs for a single par- 0.3 :
ticle. 0.0 0.5 1.0

the left of a valley bottom and is separated from it by a FIG. 9. Plot of 6(r) as a function ofr (solid line) and, for
barrier less thai'. In this casex= 0 will be crossedseveral comparison,%epure(r) (dashed ling

times in a typical single run, while the thermal average

(x(t)) will remain at the bottom of the valley until it jumps + 2/72farcco§(r —1)/V2(r+1)]}2 and is also plotted in
to the right over the barrier without crossimg=0. Thus, as  Fig. 9. The expansion for smallgives

was found in[60] for the return to the origin of a single

walker, the exponentg and ¢ should generically be differ- E(r):j__zr +o(r), (93
ent.
We now compute the probabilitil(t) that the pointx 1 6
=0 has not been crossed by any particle up to tinmgthin > Opurd 1) =1——=r+o(r) (94)
a

the effective dynamics. Let us define for each valley the

auxiliary variableamn; ,m, equal to the total number of sites I .

in the descendingnf;) and ascendingnf,) bonds, respec- and thus t'hey are deflnltlv'elly different. In the casel
tively, which have not been crossed by any particle betweel{/Nere particles always annihilate, we obtain

0 andt. We define the probabilitieB,( 7, , 7,,m;,m,) that _

a valley has a specie bondsz,,7,, and variablesn, ,ms. 6(r=1)=0.38068B. .. (95
Consider the decimation represented in Fig. 2. Let us denote

the two valleys corresponding to bonds (1,2) and (3,4) conwhich may be compared with 6, {r=1)=3/8=0.375.
taining, respectively, the speciks andk,. Upon decimation ~The difference remains very small for allas shown in Fig.

of bond 2, the two valleys merge and the spdgigumps to 10

the bottom of the valley (3,4) and thus goes over the bond We have also generalized the calculation presented in this
(2) and (3) to react there with the spedig As a conse- Section to compute the.umber of yisitsof '.[hermally aver-
quence, the auxiliary variable of the new renormalized bondded trajectories of particles at a given point. It leads again to

F;=F1+F3—T evolves with the rule 000

mé: ml+ 5k1'0m2+ 5k1‘0m3 . (91) 0.003 1

0.002
This is a particular case of the auxiliary variables studied

in Appendix A with a,=b,= 6o andd,=1.
The final result is that the fraction of sites that have never 0.000
been crossed by any particle in the effective dynamics ded8 _g

cays asm/I~(Ir) "%, where the persistence exponents

0.001

the solution of the following equation involving the conflu- oo
ent hypergeometric functiorid(a,b,z): 0003
-0.004
-0.006 L
For the proces#4) one hagpg =r/(1+r), and the result- 0.0 0f5 1.0
ing exponentd(r) is plotted in Fig. 9. Surprisingly we find
that it is numerically extremely close for all(to less than FIG. 10. Plot of 59(r):%9pure(r)—§(r); the difference re-

about 1% in relative differengeof one-halfthe result[11] mains very small for allr. It vanishes atr=0 and r
for the pure system, which reads;6,,{r)=—5 =02807Q... .
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Below, we obtain the exponent¥(r) and ¢(r) exactly
for the procesg4).

1. Exponenté(r) for the process (4)

For a domain to survive up to timewhile keeping its
variablem=1, the two domain walls must avoid meeting
each other up to time, but they can meet other exterior
domain walls, provided that upon meeting they coalesce and
do not annihilate.

Since the two domains walls must not meet, given the
properties of the effective dynamics in the RG, the decay of
Q. (t) is governed by the events such that at sdrg¢he two

FIG. 11. Diffusion and merging of domains. To each domaingomains belong to two neighboring renormalized valleys. At

present at time (bottom of the figurgis associated the number
of ancestor domains in the initial statdefined at the top slice

all later times they will still belong to two neighboring renor-
malized valleys and no decimation of the two renormalized

=0). Note that some initial domains die without producing any ponds separating the two domains can occur. As a conse-

descendant domain at tinte

a multifractal spectrum of exponents. The calculation and th

results are presented in Appendix A.

C. Statistics of merging domains

Here we define domains as intervals between particles.

For the reactior(4), on which we now concentrate, when a
domain dieqthe two particulesA meej the two contiguous
domains can either merge if the particles annihilatéth

probability r) or remain separate if the particles coalesce

(with probability 1-r). To characterize the statistics of the
coarsening of domains in the pure cdse., Potts domains
with g=1+(1/r)], Krapivsky and Ben-Naim have intro-
duced[46] the following definition. They defin®,,(t) as the
number of domains at timé which have for ancestors
=1 initial domains. This is illustrated in Fig. 11.

The total numbem(t) of domains remaining at timeé
(equal to the total number & at timet) is simply given by
the sumN(t)==,",Q(t) and decays as pi/I(t), where
[ (t)~ (T Int)? is the characteristic length at tiniegiven in
Eqg. (10). The fraction of initial domains which have a de-
scendant that is still alive att is given by S(t)
=3 ,.mQ,(t)=(m)N(t). The decay of these quantities de-
fines two new independent persistence exponérdaad i:

QuH~1(t) 7, (96)

St~ 1(t)~Y, (97)

and with these exponents it is expected Qaf(t) takes the
scaling form

=
(v

The scaling function is expected to behave for snzadls
Q(z)~z°, where the exponent is related to ¢,¢) by the
relation 6=2—¢+(1—¢)o. Note that the inequalities
Q:i()=Z,Qn(t)<=Z,mQu(t) imply that y=<1<45. Note

Qm(t)= (98)

I_(t)HQ

that here we have again defined the exponents with respect to

the characteristic Iengtl_“(t) at timet. Thus in the pure case
our definition differs from the one d#6] by a factor of 2.

e

quence, to compute the exponefitwe can consider sepa-
rately the two corresponding half-spaces.

For a given half-space, we introduce the probability
R'(#,7") thatthe first bond has never been decimageu
the valley is(#,7’) andthere is always one walker in the
first valley. The RG equation for this quantity reads

[TCor—(1+9)d,—(1+7")d,,—2IR (,7') (99
=RI(7,-)* ,[P§(0,)+(1—r)PX(0,)] (100
+RC(-,00% [P, 7))+ (1=1)PR(-,7")]

(101)
—R'(n,7") f “dn,> PL(0my), (102
0 K’

where the— term arises because ti, unlike theP} , is

not normalized to 1, and one must count the loss associated
with the left bond of the second valley. Integrating over
(7,7') one finds thaR" = fd5 d7'R'(7,7') evolves with

dr'

ar

r —fdn’RF(O,n’)—rpgf dyR"(7,0)

—rRFf0 dy PL(0,7) (103

corresponding to the three forbidden cases: decimation of the
first bond, decimation of the second or third bond when both
valleys are full, and annihilation occur.

The exponent will be given by the decay of the half-
space probabilityR( 7, 7')~T ~?, since the probability asso-
ciated with the two sides will deciy as the square of the
probility for one side, i.e., af ~2%~1;°. SettingR(7, ')
=T"%" 77 p(n,7'), and usingp} + (1—r)px = 1/(1+r),
one finds

0=[(1+7)d,+(1+7")d,+(6—1=n—n")]p(n,7")
(104)
1 ’
17 f077d771f>(711,0)+f077 dnzp(nﬂ?z))-
(105
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FIG. 12. Plot of the exponend(r) for the procesg4) in the
Sinai landscape, determined by E#08) (solid line), and compari-
son with the numerical results of Krapivsky and Ben NdiRef.
[46]) for the pure casécircles.

There is a solution of the form)(oy,n’)=}3(17+ 7'),
wherep(7) satisfies

~ 1 ~
0=L(2+ )a,+ (5-1-mlp(n)+ 147 | "dn'B(m).
(100
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2. Exponentys(r) for the process (4)

To computeys we need to obtain the scaling behavior of
the average number of ancestors of the doméin)
~T2=% However, this isa priori difficult, as the variable
m is associated to a domain which can extend over many
renormalized bonds and is thus “nonlocal.” However, we
can circumvent this difficulty by decomposing upon the
several renormalized bonds which make up a domain, in or-
der to have docal rule under RG for an auxiliary variable
associated to bonds. Thus we write each variabléor a
domain made out of bonds, as the sutm=b;+b,+---

+ by, of new auxiliary variables, each associated to a bond.
Sinceq does not grow withl", the scaling of m) and{b)

with T" is identical. We define RG rules for the lodalari-
ables as follows. We consider two neighboring valleys as in
Fig. 2 with bonds(1,2) containing specid; and (3,4) con-
taining speciek,, respectively. One must think of the vari-
able b as counting the number of ancestors associated to a
renormalized bond and thus upon decimation of b&)dhe
variablesb, b’ associated to the new bonds of barri€rs
+F3;—1T" andF, become

b:b1+b2+b3 and b/:b4 if k1=(0, (110)
b:bl and b,:b2+b3+b4
if ky=A and k,=0, (111

b:bl and b,:bA |f k]_:A and kzZA

(112

After derivation with respect toy, one finds a standard hy- 1 first case where the decimated valley is empty is obvi-

pergeometric differential equation which allows only for a

solution not growing exponentially ay—oe, the confluent
hypergeometric functiot (r/r + 1,2+ 8,2+ 7). The bound-
ary condition aty=0 then determines the exponei(t) as
the solution of the implicit equation

2U'

.
m,2+5(r),2>=0.

(107
Using the functional relation zU'(A,B,z2)+(B—-1

—-2)U(A,B,2)=—-U(A—-1,B—172), the exponend(r) is fi-
nally the solution of the equation

r
m,2+ 5(r),2) +[6(r)—1]U

1
U(—m,1+5(r),2>=0. (108)

The solution of this equation is plotted in Fig. 12.
In the caser=0, we find §(r=0)=1 as expected. In-

deed, in that case where particles always coalesce, domains

cannot merge, and thum=1 is the only possible value:

Qn(t)=*%+ Om1 and thusé=1=¢ as in the pure case. For
the casa =1, where particles always annihilate, we find

S(r=1)=2.5308 . .. (109

which is remarkably close to the numerical result obtained in

[46] for the Ising pure casedy,{r =1)=2.544). This puz-
zling feature also holds for other values @fas shown in
Fig. 12, with less than about 1% in relative difference.

ous. In the second case, where a particjamps from valley
(1,2 to the empty valley3,4), the ancestors of the domain to
the right of A previously associated to the bon@s, (3), and
(4) must now all be associated to the bo@l. In the third
case, where the twA meet, the ancestors @,3) disappear
from the problem in all case&.e., annihilation or coales-
cence of theA particles.

Introducing the rescaled variablgg=b/I'®, where ®
=2(1- ), the fixed point RG equation for the valley dis-
tribution Py (%, %',B8,B8") reads

0=[(1+ )3, +(1+7')d, +2

+qs(ﬁﬁﬁ_*—ﬁr&ﬁ’—i_z)]l:)k(7]177’7ﬁ1,3,) (113)

+WElYk2JB' Pkl( ! 101:81 1ﬂ2)* 77Pk2( ' 177’ 1133 1B4)
| (114
X B—[B1+ (B2t B3) o, 0l}

X {B" = [Bat (B2t Ba) bk, ,adk, 0l} (119

+Wt1,k2fﬁpkl<n, B1.B2)* 5 Pi (0. B3, Ba)

| (116
X &{B—[B1+ (B2t B3) &, 20k, al}
X (B —[Ba+ (B2t Ba) bk, 0l}- (117
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We introduce the two first moment&£0 andk=A) 1.0Q
! 1 ’ ! ’
k(7,7 ):ﬁf dpdB’'BPu(n.7".B8.8"),
P*(n,7")
(118

whereP* (5,7')=e 77" v
USing the Symmetrypk(ﬂ:”l'ugvﬁ,):Pk(’]’a77:3’1,3): 05 r 1
we find that they satisfy the closed system

0=[(1+n)d,+(1+7n")d,—n—n'—Plgo(7,7") (119

+05 | "Tao.7)+ 00( 01+ (0, )+04(-. 0]

7 0'oo.o 015 1.0
+p3f0 [9o(7,-) +9al7n,)], (120 r
FIG. 13. Plot of the exponent(r) for the proces<4) in the
o=[(1+ ,7)377+(1+ 7]')37], =5 —®lga(7,7") Sinai landscape, determined by E#32) (solid line), and compari-

121) son with the numerical results of Krapivsky and Ben N&iRef.
[46]) for the pure casécircles.

n n
+DZJ'0 [9a(-,0)+go(-,0)+9o(0,-) 1+ pg fo ga(-,7")  where the eigenvalues, usip§ =r/(1+r)=1—p}, are

(122 11 N1+ 6r+r?
, v = o T T o (129
+pt\f [9a(7,)+go(7,-)+Go( . 7)]
0 The only solutions of Eq(128) that are not exponentially
' growing at infinity are again given in terms of the degenerate
+pg fo ga(0,-). (123  hypergeometric function,

S. U(l-v.,3-d,2+72). 130
The exponentb is determined by the condition that the so- (DU, 2) (130

lutions go(7,7") and ga(#,7") of this system should be e poundary conditions2. (0)=®S. (0) finally give
well behaved at infinity(i.e., should not be exponentially - -

growing. U(e v (F).200. (1).2=0. 131
We found that setting (=v.(r),2¢.(r),2) (13D

Since ¢, (r)<w_(r), the growth of(m)ocI'2(1=% will be
9a(7.7")=Sa(z=n+7), (124 governed by, (r), and thus the final result is that the ex-
ponenty(r) is determined by the equation
9o(7, 7' ) +9o( 7', 7)=Se(z=n+n"), (129

1 r J1+6r+r2

2 14r  2(r+1)

allows us to obtain the following closed system for the two U
functionsSy(z) and Sx(2):

20(r),2|=0. (132

In particular, we have the following expansion around

0=(2+2)Sy(2) — (z+P)Sy(2) + 2pg fo[so(')+SA(Z)]a =0:
(126 5
z//(r)=1—§r+o(r). (133
0=(2+2)S\(2)— D)S ’ Sal( A ,
(2+2)S\(2) = (2+ D) A(Z)+JO[ A()+PaSH(2)] For the casa =1 where particles always annihilate, we
(1279 find
i.e., independent of the antisymmetric part @§(»,n’) Y(r=1)=0.25482 . .. (134

which we will not need. To decouple this system, we intro-
duce two linear combinationsS. (z) =caSa(2) +CoSp(2)  which again is remarkably close to the numerical result ob-

that satisfy closed equations, tained in [46] for the Ising pure case:fp,dr=1)
=0.2542), a property which holds again for alland again
0=(2+2)S.(2)—(z+®)S.(2)+ Vi(l’)fzsi(-), to within less than about 1% in relative difference, as illus-
0 trated in Fig. 13.

(128 In the end we note that one can generalize the bound
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t= The total numbem(t) of particles at timet is simply
given by the sunN(t)==,D,(t)~(I(t)) L. The fraction of
initial particles which have a descendant still alivetas
given by Sa(t) ==,nD,(t)=(n)N(t). Again, the decays of
D,(t), i.e., of the number of particles which have encoun-
tered no other particles, and 8f(t) define two new inde-
pendent exponents,

¢ D1(t)~1(t) "%, (139
FIG. 14. Configuration where a surviving domain contains no SA(t)~|_(t)*¢A_ (139
persistent site, which accounts for the strict inequality) < 6(r)
found here for>0. Together with these exponents, it is expected tha(t)
takes the scaling form
wpureg epure (139
. . . 1 n
discussed irf46], to the disordered case, as Dy(t) == D(_ , (140
B |(t)27¢A |(t)l*1/fA
P(r)=<6o(r), (136

where the scaling function behaves for smalias D(z)
i.e., that the exponenk(r) is always bounded by the persis- ~z?A for small z where the exponentr, is related to
tence exponend(r) of thermal averaged trajectories found (9a,¥a) Dy the relationdpa=2—¢a+(1—a)oa.
in Eq. (92). This comes from the observation that a point that We will compute these exponents via the RSRG by two
has never been crossed by any particle up to tirfer the ~ methods. The first one is direct, while the second one, pre-
effective dynamics has to belong to a domain that has &ented at the end, will rely on results previously established
descendant still living at time Here the reverse inequality is in Sec. Ill. ' N _
Clear|y not true(for pé #O) since a Surviving domain may In the first method., YVe |ntr0dl-,lce an aUXIllaI’y varialple
not contain any persistent site, as it can shift from its initialfor €ach valley containing a partick that counts the num-
position, as shown in Fig. 14. In particular, we have foundPer of ancestors of this particle. We then introduce the prob-

[Eq. (93)]: ability P,E(n,n’,n) that a valley at scal&€' has (,7’) and
contains a particlé& havingn ancestors in the initial condi-
o(r)=1—2r+o(r). (137)  tion. It satisfies the RG equation
Thus ¢(r) and é(r) differ already at first order im. This is [Car—(1+5)d,—(1+5")d,y —2]Px(n,7',n) (141
different from the case of the random field Ising model, stud- . . - -
ied in [59,61], where it is found thaiy= 6= (3—\5)/4, as =Pa(77,-,n)* ,Pp(0,-) + Pa(-,0n)* ,Po(-,7")
the situation depicted in Fig. 14 does not occur. (142
r r r r ’
D. Statistics of coalescing particles +Po(7,-)*  Pa(0,-,n) +Po(-,0)* ,Pa(-, 7 ’r(‘i43)
We now come to the study of persistence properties asso-
ciated t(_) a particle. F_oIIowmg.the general framework pre- +(1—r)[P£(77,~, ), nP/F\(O,',-)
sented in the preceding section for the study of domain
merging statistics, we now introduce the numimgy(t) of +PL(-,0,)* n,nPi(-,n’,-)], (144

particlesA at timet which haven particlesA for ancestors in

the initial condition. This is illustrated in Fig. 15. This will where Pg(y],')?’) is the probability that a valley at scal
lead us to introduce two exponent and s . 54 has been  has (5, ') and contains no particle, i.e., it satisfies ELp).
defined and computed numerically in the pure case in Refat this stage, the variable is an integen=1,2,3 . . ., and
[77]. We will compute 54 and ¢, here in the disordered the convolution om is a discrete convolution.

model. At large T', we know the fixed pointPg(7n,7")

=pse 77 and ,PL(7,%',n)=pie """, where p}

) =r/r+1=1-p}. Thus setting  PL(%,%7'.n)
=p2e*”*’7'AF(n+7;’,n), we find that the function
A"(z,n) satisfies
' op=1 n=3

[Tor—(2+2)d,+z]A"(z,n)

zZ
, =2p3J dz’ AT(Z',n)+(1—r)prAT(-, )xnAT (-, 0)
n=; 0

FIG. 15. Number of ancestors of surviving particle. (145



PRE 60

and we now will compute successivedy(r), ¥a(r) for all
r and the scaling function far=0.

1. Exponentéa(r) for the process (4)
To compute the expone®d}, giving the decay of the num-
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)=0.
(152)

z
+2pg fodz’A(z’,v)+(1—r)p,’§A(~,-)*ZVVA(«,

In particular, usingpg =r/(r +1)=rpj , we find that its first

ber of particlesA that have only one ancestor in the initial momentC(z) = [ydv vA(z,v) satisfies the differential equa-
condition, we need to solve the previous equation for thdion

particular valuen=1. A'(z,n=1) decouples from the other
values ofn, and satisfies the linear equation
[F&F—(2+z)<9z+z]AF(z,l):2p§fzdz’AF(z',l).
’ (146)
Since
D-1(t)=N(t)J ,, , Pa(7, 7", 1)~ (1% [dzze AT (2,),

we setA’'(z,1)=T272%A(z). The functionA(z) is then the
solution of the differential equation

(2+2)A"(2) + (285~ 1—2)A" (2) — (1—2p})A(2) =0
(147

together with the boundary condition 2&0,

2A"(0)+(28,—2)A(0)=0. (149

We thus findA(z)><U(1-2pg,1+284,2+2), and the expo-
nentd is determined by the implicit equation
2U'(1-2p§,1+2684,2) + (28— 2)U(1—2p§,1+254,2)

=0. (149
Using the functional relation zU'(A,B,z)+(B—1
-z)U(A,B,z)=-U(A-1B—12), and p§=r/r+1, the
exponents,(r) is finally the solution of the equation

U (150)

- T1,25A(r),2) =0

For the particular case=1 where particles always annihi-
late upon meeting, we hawé(r=1)=1 as it should since
in this case the particles can have only one ance3{gt)

= 0n1Na(t). In the limit r—0, where particles always coa-
lesce upon meeting, we hadg(r =0)— +« : indeed in this
case at largé#’, all valleys contain a particl& (px=1), and
the probability to haven=1 decays exponentially witl’,
since it requires that four consecutive boritte two bonds
of the valley and the two neighbgrare not decimated. One
can compare with the pure casé,=261 in notations of
[77]) where 5,(1)=1 but 5,(r=0)=3.

2. Exponentys,(r) for the process (4)
To compute the exponent,, we introduce the rescaled
variable v=n/T?(1~ %), The fixed point solutionA(z, v)
=Pi(z,v)/pse ? of the rescaled variables has to satisfy

[(2+2)d,—z+2(1— ¢pp)(vd,+1)]A(z,v) (151

(2+2)C"(2)+(2¢p—1-2)C'(z)+(1—-2p§)C(2)=0
(153

with the boundary condition a&=0,

2C'(0)+2(ypp—1)C'(0)=0. (159
So finally C(z) = U(—1+2pg,1+ 24,2+ 2), where the ex-
ponenti, is the solution of the implicit equation

2U'(—1+2p§,1+2¢4,2)

+2(ha—1)U(—1+2p% 1+ 2¢2,2)=0.

(155

Using again the functional relatiomU’(A,B,z)+(B—1
-2)U(A,B,z)=—-U(A-1B—-172), and p;=r/r+1, the
exponentya(r) is finally the smaller solution of the equation

2
U “Iir 2Pa(r),2| =

(156)

For the particular case=1 where particles always anni-
hilate upon meeting, we havg,(r=1)=1=45(r=1) as it
should, since in this case the particles can have only one
ancestor. In the case=0, where particles always coalesce
upon meeting, we havg,(r=0)=0: indeed the probability
for an initial particle to have a descendant livinglats 1,
and thusS,(t) is constant and not decaying.

3. Scaling function

The distribution D(v) of the rescaled variablev
=n/T'?72¥A can in principle be obtained in terms of the
solutionA(z,v) of Eq. (151) as

= = Pa(m,mav) (>
D(V):J d’?lJ d’?zA(m—*nz=J dz ze A(z,v).
0 0 p 0

A
(157)

In Laplace with respect tor, we have thatA,(z,q)
=[odve %A (z,v) satisfies

{(2+2)9,—2—2[1— ya(r) 1A} A, (2,0) (158

1-—
fdzAz )+ T B @A o) =

1+ r
(159

In the caser =0, where particles always coalesce upon
meeting, the numben of ancestors should have the same
statistical properties as the length of a valley, and thus using
the fixed point solution we should have
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TABLE I. Summary of the results obtained in the text for persistence exponents associated to the decay

of the probability of each
A+A—0(probr)A+A—A(prob 1-r).

indicated event,

in the case of the reaction diffusion process

Event Exponent Equation
No crossing of O by any particle o(r) 6=1/(1+r)
n=gInT particles absorbed at O w(Q) 2w0=(1+r)"1—g+gIn[(1+r)g]

i : — — [— roo_

No crossing of O by thermal. aver. traj. o(r - Ul - —

g y J (r) 0U( 1+r’20'1> U( 1ir ,20+1,1
Domain survival without merging o(r) U(—1/(1+r),1+46,2=0

/ 2
Domain survival with merging P(r) u _1_L_ﬂ 2l=0
2 1+r  2(r+1) 77

Particle survival without coalescence Sa(r) U(—=2r/(1+r),264,2=0
Particle survival with coalescence Pa(r) U(—=2/(1+r),2¢p4,2)=0

—zyq cothyq

(160

fxdvquPK(Z’V)= 4.
0 p} sintt\q

Indeed we find

R_o(za)= — 1= @@ (163

sinkt\/q

is the solution of Eq(158) for (r =0,4=0), and thus in this

case the scaling functioRP(v) reads

1
Dio(v)=LT .| ——=
r 0( ) q (COSH\/&)
+ oo
= > [2vr(j+12)2-1]e ™ 124D
j=—»
(162
2 3
=— - e K,
\/_ 7 E ( 1)k+1k2 k4lv (163)
TYYk=—»

4. Second method to compui@ (r) and ¢ (r)

To computeD(t), i.e., the probability that a given par-
ticle A has met no other particles up to timewe can con-
sider this particléA as a tagged particle, sa&§ and consider
it as a new specie in very small concentration. It satifies th

following reaction rule:

A+X—0, prob=1 (164

and of courseX+0— X and the same reactions for theas
before. We need only to work to linear order g and we

To compute the exponenf,(r) we need to consider
similarly the reaction for the tagged particke

A+X—X, prob=1-r, (165

A+X—0, prob=r, (166

and of courseX+0— X and the same reactions for theIn

this case u=pg+pa(l-r)=1/(1+r) and 1/Xu<1,

which corresponds to amnstablefixed point atpy=0. One
finds px~T ~®, where® is the solutiond®_ of Eq. (52) for

w=1/(1+r). SinceS,(t)~py/I'>~T ~2/A we recover Eq.
(156 which determinesia(r) (see Table)l

VI. DISORDER IN THE REACTION PROBABILITIES

It is interesting to study the stability of our results to an
additional quenched disorder in the reaction probabilities
given by the matrixW (i.e., spatial inhomogeneitiesWe
continue to consider only the rule that species react immedi-
ately when they encounter, but the analysis in fact also cov-
ers — in an effective way — the case where reaction rates
are finite and with quenched disorder. We sketch in this sec-
tion a possible way of applying the present RSRG procedure
to this case.

Let us consider a model where the reaction probabilities
are themselves functions of the positmﬂil’kz(x). A simple

example is to allow the parameteto depend o asr(x) in

he proces$4). Let us examine what happens at a decimation
ime scald’=T Int. The particle in stat&, in the decimated
valley jumps over the barrier to a valley containiag Since

k, is typically at equilibrium at the bottom of its valley, the
reaction is most likely to take place at the bottom of the
valley within aO(1) distance of i{since this is where all the
weight of the particulek, is concentrated Thus as time

are back exactly in the case studied in Sec. Ill of the dynamincreases, the total number of sites in the system where re-
ics near the asymptotic state of a new reaction diffusiorctions can typically occurs decays a§ 2.1/ In each renor-
(whose fixed point hap}=0). The corresponding eigen- malized valley af” there is typically a “finite” numbeii.e.,

value of the matrixM introduced in Eq.(22) is u=p§

not growing withI') of sitesx where reactions occur and

—r/(1+r). Here 0<u<1/2, which corresponds to an at- thus a “finite” number of possible valued/(x) (a notation

tractive fixed point atpx=0 (since theX disappeansand
with px~T "%, where ® is solution of Eq.(52) for u

=r/(1+r). Since D4(t)~py/T'2~T 2%, we recover Eq.

(150).

for the set oNVEleZ). For each valley these form a given set

fixed in time. There are thus priori two competing effects:
the several values taken W in a valley result in an “aver-
aging” effect for the effectivaV of this valley. On the other
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hand, the fact that this set is finite and fixed in time impliesdimensional manifold of fixed points in the RG sense, and

nontrivial correlations between two reactions occurring atthe problem ismarginal Like all marginal problems, it is

different times in the same valley. very sensitive to corrections which may make disorder mar-
Here we will restrict ourselves to considering a toy modelginally irrelevant or marginally relevaribr remain strictly

where we assign a single transition matikto each renor- margina). The averaging effect may in the end make the

malized valley with probabilityP(W). It would be accurate disorder marginally irrelevant, but to decide, within the real

in the case where in the initial distribution the@'s are cor-  dynamics[76] and within a model with shorter disorder cor-

related over distances much larger than the typical thermaklation length, whether disorder is actually marginally irrel-

width of a packet~O(1), butstill small compared td’?.  evant, and how it flows, requires a more detailed study which

This problem can thus be treated by introducing the probabilgoes beyond this work.

ity P (#71,7,,W) that a valley has rescaled barriejg, 7,

and an associated ra#w. When two valley merge upon a VII. CONCLUSION

decimation, the new one simply keeps theof the lowest _ i i

one. One notes that the statistical independence is again pre- I this paper we have studied the problem of various spe-

served by RG. The RG equation is simply cies of particles diffusing in the presence of quenched ran-
dom local biagSinai landscapeand reacting upon meeting.
LarPL (71,72, W) We have shown that the real space renormalization group
. method(RSRQG, which has proved to be a powerful tool to
=[(1+91)d,,+(1+72)d,,+2]P (71,72, W) study single particle diffusion in the Sinai landscd@®],

can be extended in a simple and natural way to study a large
class of reaction diffusion models. Since here also the phys-
ics is controlled by infinitely broad disorder fixed points, this

method, as in the single particle problem, is expected to yield

. the exactlarge time behavior. Focusing on renormalized val-
where [wP (71,72, W)=P\(71,7,) and summation over |eys as well as on the particldand speciescontained in

repeated indices is implied. We also note that the distributionese valleys, and following the evolution of their distribu-
of W, Pr(W)=Z2yf . ,»,Pu(71,72,W), is preserved by the o py decimation upon an increase of the time scale, al-
RG rule, thusP' (W)=P(W). Thus we have a “marginal” lowed us to obtain many new exact results for this problem.

+W||:1,k2[P£1( Vi 1W)* 7]2P£2(01')

+ Pl (0% Pl (-, 72, W), (167

problem, since in this toy mod& (W) does not flow by RG We have obtained a detailed description of the asymptotic

[76]. states, such as the large time decay of the density of each
One can now look for fixed points of this RG equation specien,(t), and the spatial distribution of particles. It con-

under the form firms that in thed=1 Sinai landscape the reaction is subdif-

fusion limited. The first step was to identify simple fixed
points of the valley distribution RG equation, which corre-
spond — for a given reaction process described by a transi-
tion matrix — to possible asymptotic dynamical states. Each
of these states is characterized by fixed fractiphdor each
Pk(W):th,kzpkz(W)f dW'P, (W'). (169  specie, the physical picture being the following. At time
scaleI'=TInt the system consists of a set of successive
In the case of the modé!) with a distributionP(r) of r, renormalized valleys, which can be either empty, with prob-

Pi(71,72,W)=e" 71" "2P (W), (168

where theP, (W) must satisfy

one can show that a solution is ability pg , or contain a particle of specle with probability
. p; . The separation between particles grows as the charac-
Pu(r)=P(r)pi (1), (170" teristic lengthl(t)~I2, and thusn(t)~pi/(TInt2 The

decay of concentration, when compared to the single particle
diffusion length, leads us to define universal amplitudes,
. ) * which we obtained exactly. Also, from the exact statistical
formk " SO“;'t'on of the equation pi (W) jhgependence of the successive valley lengths, the distribu-
=Wk, k,Pk,(W) Pk, (W). Such a simple solution holds in that {jon of intervals between particle@lomaing was derived
case because of the form of the matik (22) which is  (and compared with some pure case results
simply a projector onto the vectq . In general, this does To confirm that a given fixed point is indeed an
not hold and one has to solve the above equation. It is theasymptotic state, actually reached by the system at large
possible in principle to perform, for an arbitra®B(W), the time, it is necessary to study its linear stability. We have thus
same study as the one done here, such as stability eigenvalbtained analytically the spectrum of stability eigenvalues
ues around the fixed point, etc., which is left for the future. around any simple fixed point, as a function of the reaction
To summarize, the above result indicates that within thdransition matrix, thereby solving the stability problem. The
toy model and the effective dynamics, quenched disorder igonvergence towards these asymptotic stétes the attrac-
the transition matriXV(x) will lead to a modification of the tive RG fixed points was studied. The leading convergence
large time properties. These properties can be computed utowards these asymptotic states was found to be generically
ing the RG by assigning an effective reaction probabilityas|p,(t)—pg |~ (T Int)~® with a nontrivial® solution of a
matrix of each valley. They depend in a continuous way orhypergeometric equatiafwith, in addition, an amplitude pe-
the asymptotic distributiod®(W). There is thus an infinite riodic in Int in the case of complex eigenvalyetn some

wherepg (r)=r/(1+r) andpx(r)=1/(1+r) are the equi-
librium occupation probabilities for the problem with a uni-
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cases, corresponding d@= + o, the convergence is faster as also discussed. In a simple case it was found to be marginal,
a power law in time with nonuniversal exponents dependingand thus yield nontrivial modifications, continuously varying
on details of the initial model. with the disorder distribution. The question of whether this
Eigenvalues corresponding to unstable fixed points, whicfiesult is stable with respect to corrections resulting from the
were also determined, are of particular interest for reactiongeal dynamics or from disorder with shorter correlation
which lead to several distinct dynamical phagies, several length remains to be further investigated =~ _
possible asymptotic stated he transitions between different _ Although we have not considered explicitly branching
dynamical phases being controlled by such unstable RGARW processes, with additional creation of particles, it is
fixed points, we have thus obtained the corresponding criticaf!€a" that for at least some of them the physics should not be
exponents. As an example, a process with a nontrivial phas ualltatl_vely_too_ dn_‘fe_r ent from the one obtame_d here. I_n-
diagram was studied ' eed, since in Sinai disorder particles are essentially confined
We have also studied persistence properties associated tt% the bottom of large renormalized wells, as long as the

a given asvmototic state. As in pure svstems. where it Wagrocess is such that particles are not created out of the
an ymp o P Y ! . “vacuum and that the annihilation reactions are sufficient to
originally defined, persistence can be studied for variou

; inal icles. d . R K naintain the number of particles small when at local equilib-
types of patterngsingle particles, domains, efcRemark- rium in a well, the reaction can be treated very similarly via

ably, for the disordered models at hand we are able to derivVRsrg as for the model studied here. We have thus charac-
amuch largerset of exact results than exists at present forgrized a broad set of reaction diffusion models with disor-
the corresponding pure systems. der.

We have first obtalne_d_, for a generic process, the d_ecay Finally, it is worthwile to mention that we have also iden-
exponents for the probability of no crossing of a given point jied cases which clearly require a more complicated analy-
by single particle trajectories. As noted [if9], in a disor-  gjg going beyond the present paper. For instance, we have
dered system, persistence of thermal averages can be qugﬁ,en an example of a marginal reaction, which requires a
different from single particle persistence. Thus we have alsg,on|inear stability analysis. Also, we have given an example
computed the probability of no crossing of a given point byf 5 cyclic reaction for which all simple RG fixed points are
thermally averaged packets, which yields the decay exponegfown to be unstable. The question of the determination of
6. The properly generalized persistence exponents associatétk true asymptotic states of this reaction is thus still open.
to n crossings have been defined, and computed. Next, wanother interesting, and maybe related, question is whether
have characterized the statistics of domains, which can digeactions with a large enough number of species, which can
appear or merge as time increases. Restricting, for simplicityead to chaotic attractors in pure cag&®,13, will also lead
to the proces&+ A— 0 or A with probabilities ¢,1—r), we  to chaotic behavior in the presence of disorder.
have obtained exactly the expone#®s) and ¢(r) charac-
terizing the survival up to time of a domain without any
merging or with mergings, respectively. We have also intro- ACKNOWLEDGMENTS
duced new exponents which similarly characterize the statis- \we thank D. S. Fisher for fruitful discussions, as well as
tics of the coalescence of particles. We have then computed, Fayuve, U. Tauber, and P. Chauve for helpful remarks.
them, namelyd,(r) and ¢(r), characterizing the survival
up to timet of a particleA without any coalescence or with
coalescences, respectively. APPENDIX A: AUXILIARY VARIABLE FOR

We have found these new exponents as solutions of hy- VALLEYS
pergeometric equations. For comparison, the only known
analytical result in the pure case is for the expongpt{r)
for the procesg4). A surprising outcome was that several

exact exponents of the model with disorder were found to b%orresponding to bonds (1,2) and (3,4) and containing, re-

numerically very close, for all values ofto some exponents spectively, the species, and k, merge, and the specle
for the pu.re system, alt.hough they are assomat.ed toa Conqu]mps to the bottom of valley3,4) and thus goes over the
pletely different diffusion length[lpue~t while 1(t)  pond(2) and(3) to react there with the specle. It is thus
~(TInt)?]. Indeed we found thaf(r)~36,,d{r) although natural to consider an auxiliary variabtewhich, upon deci-
they are definitely distinct, and furthermore tha(r)  mation of the barrieF;=F,+F;—T, evolves with the gen-
~¢pure(r) and 5(r)%5pure(r)v where ¢pure(r)- 5pure(r) - eral rule
not known analytically — are extracted from the numerical
simulation of{46]. The agreement in relative values is better

than about 1% for alt. It may be that this observed numeri-

cal coincidence could be traced to the exact statistical inde-

pendence of valley lengths in the disordered problem, whilgyhere the coefficientsag b, ,d,) depend on the specie
the so-called “independent interval approximation™ gives awhich diffuses upon the corresponding decimation.
reasonable approximation in the pure céset, surprisingly, We now write the valley RG equation for
poorer than the one provided by these new exponentss, PE(% 7' ,m,m’):

however, is far from an explanation and further investigation
may be of interest. ) - ) ,
The effect of additional disorder in the reaction rates wad 'dr—(1+5)d,—(1+»")d,, —=2]Pi(n,7n".mm")  (A2)

In this appendix we study auxiliary variablés) associ-
ated to bonds that evolve upon decimation as follows. Con-
sider the decimation of bon®) in Fig. 2: the two valleys

mg;= dy, My + by My+ay M3, (A1)
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« g{(nl,nz)zl""’gk( 71), where the exponent characterizes
:Wkl,szm R (A3 the scaling of them variablem~T"¥.
tiTeR2 For this to work we obtain, in terms of the matri¥
/ / defined in Eq(22), the necessary condition
X[PL (7,-.mmp)x Pk (0,,m,,mj) a(22) y

, ) / Ok(7) =W Pk Oi, () =My, 0 (7)) (AL4)
X 8(m' —ay,my; — by, mMy—dy,my) (A4)

together with the differential equation fgi(7):

+PL (-,0m;,m)* ,PL (-,5",my,m’)
A 0=[(1+7)d,— 71— ¥l )

X d(m—dy,my— bklmi—aklmz)]. (A5) .
+ (M, i, + Wlﬁl,kzptzakz)f Ok, (+)
Integrating this equation over tmevariables one recovers of 0
course the specie valley RG equatidrb). + My, by gy (0)7. (A15)
We now define the first moment: R

One can then tng,(7)=pg ¥(n), which automatically
Gﬁ( N1, 72)= f M, P (71,72,m;,my),  (A6) satisfies the necessary conditi@kiL4) above(sincepy is by
M1,y construction an eigenvector of tematrix of eigenvalue Ji
and then the second equation gives the conditions involving
Gﬁ( N1,72) = f MyP(71,72,my,my). (A7) two numbersh 5,

mq,my
_ _ _ Mk, Pi, (di, +ax ) = NPy, (A16)
Since we are looking at the symmetric case, we have that
Gﬁ(nl,n2)=9§( 7;2,1171). We can thus write the following Mk,klp’krlbk1:7\2p’kc , (A17)
closed equation foG; (71, 7,):

1 together with the differential equation fg( 7):
[Top—(1+71)d,,—(1+ 7,)d,, —21Gi(n1.72)  (A8)

n
0=[(1+n)d,— n— +A f )+ N (0) 7.
:th,kz[Gﬁl(nlv')* nzpkz(ol') [( 7]) 7 7 lp]g(ﬂ) 1 0 lﬂ( ) Z‘p( )77
1 (A18)
tay Py, (-.0% , G (-, 72) (A9) . _— : .
We now give two applications of this general analysis.
+ by, Gic (0,-)% 5, Pi, (- 72) , _
1. Persistence exponend

1
+dk1Gk1("0)* mPro( 721 (A10) We now study the casey=Dby= o and dy=1 corre-

h _ he fixed Do uti sponding to the auxiliary variabléA1l) needed to compute
*In the asyn:ptf)yc_ :tate we use t € xe plomt solutiony, persistence exponefit Conditions(A16) become
Pi(mi,m)=pce "7, and  writt  Gy(71,7)

=e M~ "™q,(7n1,m,) and obtain the equation for the new

. Pk +MioPg =N1pi (A19)
function gy :

M\ oPg =N 2Pk - (A20)
Largu(n1,m2) =[(1+51)d, —m koPo =A2Pk

Since the rates involving the empty std@® are given by
definition by WX,=6,;, we have M = Wévi Pl = 6P
=pi . The conditions above are thus satisfied with=1

72 * % .
WK * j . +pg and\,=pg and thus the problem reduces to studying
kl’k2< Pk, 0 Gy (71.) Eq. (A18) for g(7):

(14 72)d,,~ 7219k( 71, 772) (All)

+p’k*1aklfomgk2(~,n2) (A12) 0=[(1+7)d,—n—19(n) +(1+pg)

7
><f0 9(-)+p59(0) 7;. (A21)
71
+p:2bklf 9k,(0,)
0 Differentiating with respect to; one gets

7
+py ko 1gk1(-,0)). (A13)  0=(1+n)dg(m+(1=d=1)3d,9(7)+p5[g(n)+9(0)]
2 "o (A22)
Since them variable is associated to bonds, it is natural towith the boundary conditiog’ (0)= ¢g(0). Thesolution of

look for solutions where the functiogy(71,7,) is a func-  this confluent hypergeometric equation that is a well behaved
tion of 7, alone. We thus try solutions of the form solution at infinity(i.e., not growing exponentialjyreads
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Ups.2=ddem | oo prob(g)~ (1)~ "@. (A32)
U(=p5.2-¢.1) '

The boundary condition ay=0 then leads to the following

equation for the exponent governing the scaling of thm — — . .
variablem~T¥, as a function op} : 20(9)=26(z*(9))*+gIn(*(9)), (A33)

9(m=g(0)| 2 B
It decays with the exponerft(g) obtained through the Leg-
endre transform

W wherez* (g) is the solution of 23(2)/dz]+g/z=0.
U'(=pg.2—¢,1)= SU(= Po.2—¢,1).  (A24) One can compute simply the valgg that g takes with
probability 1 as I'—e. It is given by #6(g,) =0

Using functional relations of the confluent hypergeomet-= H(g)/dg|g=ga. This givesg,= —2[ 6(z)/dz]|,—1, and thus

ric functions U, we finally obtain that the fraction of sites differentiating Eq.(A31) with respect toz and takingz=1
that have never been crossed by any particle in the effectivigo finally get

dynamics decays as/I~T"""2~(I) ", where the persis-

tence exponené=(2— )/2 is a solution of the equation gu—(1—pt) U,(-1,1,1 _ f(l— o%)
. . . a 0’U(-1,0,1)/2—Uy(—1,1,1) 3 on
0 U(—p§,20,)=U(—p§,20+11). (A25) (A34)

) _ where we have used the notatiods(a,b,z)=4d,U(a,b,z)
2. Number of thermal packets seen by a given point andU,(a,b,2)=a,U(a,b,2).
We introduce the bond variabla(n) which is the num-
ber of sites on the bond which have been crossed exactly APPENDIX B: THE PARTICULAR CASE
times by a particléany nonempty stajan the effective dy- OF “ASSOCIATIVE PROCESSES”

namics(i.e., by a thermally averaged trajectaryt satisfies ] )
upon decimation of bon@) with the same conventions as It turns out to be useful to introduce the notion of “asso-

above: ciative processes:” these are processes such that the outcome
of a sequence of reactions does not depend on the order in
mz(n)=my(n)+my(n—1)+mg(n—1) if k;#0, which it was performed, i.e., such that the rat¥satisfy
(A20) WK we  =wk wWe
praVpopy ™ YVp,BYVpipg (B1)

ms(n)=my(n)+my(n)+mz(n) if k;=0. (A27)
for all k,p;,p2,p3 (contraction overa and B is implied).
Introducing the generating functiom(z)==]-,"m(n)z",  This means that the probability op{ps)p,;=k is identical

the rule becomes to the probability of p;p;)p,=k (ab denotes the result of
the reaction ot andb). For example, the process defined in
m3(2) =dy, (2)M(2) + by (2)My(2) +ay, (2)M3(2) Eq. (4) is associative.
(A28) An important property of associative processes is that

their matrixM (22) satisfies
which, for fixed z, is the same rule as above with now

a(2)=b(2)= S o+z(1— 8¢ and d,=1. Conditions M2=M (B2)
(A16) become
and thus the eigenvalugs, have only two possible values:

(1+2z)pg +(1—2)My oP5 =N 1Pk (A29) Oorl.
For the RG, these processes have also the following inter-
zZpt +(1—2)My opd =N\op; (A30) esting property: the subspace of valley distributions of the
' form
and thus using agaM/ikO: dy.i these conditions are satisfied . . - -
with N\ 1(2)=1+2z+(1-2)p} and \,=z+(1-2)p}, ie., Pi(771,72) =W, Pr (7P (72) (B3)

we only need to perform the substitutipg —z+ pS(l—z) ) ) o
in the previous solution to obtain the equation for the expodS conserved by the R@LY), provided that the bond distri-

_T iy . T . g .
nent #(z) governing the scaling of the ration(z)/I bution P, () satisfies the bond RG equation
(102

(Ir) 7 LarPE(m) =[(1+7)d,+1IPL(7)
0(2)U(=2—po(1-2),26(2).1) + Wi W 1, Pl (0) P ()%, P ().
=U(=2—po(1-2),1+26(2),1). (A31) (B4)

The probability that a given point has been visitedrby The bond RG equatiotB4) can in fact be interpreted to
thermally averaged trajectories up to times thus obtained characterize the following modified reaction diffusion pro-
in the rescaled variablg=n/InT" as cess, which we call “the bond-reaction diffusion process:”
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one associates to the bottom of each bérel, the point of
lowest energya specie in one of the possible “states” and
defines probability distribution®,(z) for the bonds. We
consider two consecutive valleys made with the bofidg)
and (3,4). Initially the bonds(1,2,3,4, respectively, contain
the speciek,k,,ks,ks. Upon decimation of bond2), the
bond diffusion process is defined as follows in three stéps.
First the two speciek;,k, on bonds(1,2) react to give an-

other statek’ with the rateglvﬁiykz. (ii) The new specid’
diffuses towards the bottom of the bond(Bi) The species
(k" ,ks3) react at the bottom of bond 3 to give a new specie

. K . o
kg with the rateku? .- For comparison, it is useful to recall
"3
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the corresponding real dynamics with valleys: initially, the
valley (1,2) contains some specie’s the valley(3,4) some
speciek”. Upon decimation of bon{?), the specie&’ dif-
fuses towards the bottom of the vall€3;4) and reacts there-
with k” to give k with probabilityW';,'k,,. Thus, in the end,
the physical contenfthe specig of the renormalized valley
for the bond-diffusion process ik with probability

K ks
Wy, (WS
3K4

! whereas in the original valley process, the final
3

result isk with probability Wy, ,W , . The two descrip-

Yions are thus equivalent in that sense only if the rates satisfy

the associativity conditioiB1).
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