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Reaction diffusion models in one dimension with disorder
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We study a large class of one-dimensional reaction diffusion models with quenched disorder using a real
space renormalization group method~RSRG! which yields exact results at large time. Particles~e.g., of several
species! undergo diffusion with random local bias~Sinai model! and may react upon meeting. We obtain a
detailed description of the asymptotic states~i.e., attractive fixed points of the RSRG!, such as the large time
decay of the density of each specie, their associated universal amplitudes, and the spatial distribution of
particles. We also derive the spectrum of nontrivial exponents which characterize the convergence towards the
asymptotic states. For reactions which lead to several possible asymptotic states separated by unstable fixed
points, we analyze the dynamical phase diagram and obtain the critical exponents characterizing the transitions.
We also obtain a detailed characterization of the persistence properties for single particles as well as more
complex patterns. We compute the decay exponents for the probability of no crossing of a given point by,

respectively, the single particle trajectories (u) or the thermally averaged packets (ū). The generalized persis-
tence exponents associated ton crossings are also obtained. Specifying to the processA1A˜0” or A with
probabilities (r ,12r ), we compute exactly the exponentsd(r ) andc(r ) characterizing the survival up to time
t of a domain without any merging or with mergings, respectively, and the exponentsdA(r ) and cA(r )
characterizing the survival up to timet of a particleA without any coalescence or with coalescences, respec-

tively. ū, c, and d obey hypergeometric equations and are numerically surprisingly close to pure system
exponents~though associated to a completely different diffusion length!. The effect of additional disorder in
the reaction rates, as well as some open questions, are also discussed.@S1063-651X~99!15005-0#

PACS number~s!: 05.70.2a
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I. INTRODUCTION

A. Overview

Reaction diffusion processes are of wide interest in ph
ics, chemistry, and biology@1#. In physics they present
relatively simpler case of nonequilibrium stochastic p
cesses with nontrivial behavior. Traditionally they have be
studied via mean-field-type methods~e.g., law of mass ac
tion, local chemical kinetics! @2#. However, in sufficiently
low spatial dimension, particle density fluctuations beco
dominant and mean-field methods become invalid@3#. The
role of fluctuations in these processes has thus been stu
for a while, but has received renewed attention recently@4#,
as new exact results in one dimension@1# and systematic
renormalization group studies have appeared@5#. One inter-
est of these models is their relation to phase ordering kine
via the ‘‘coarsening’’ of domain structures evolving towar
equilibrium @6#. In some cases, these can be seen as rea
diffusion processes for defects, for instance domain wall
one dimension orXY-type vortices in two dimensions, whic
diffuse and can annihilate or coalesce upon meeting. Th
coarsening processes have also been much studied rec
especially in an effort to characterize their so-called per
tence~or survival or first passage! properties for single spins
domains, or global magnetization@7–11#.

Although many results are now available for reaction d
fusion processes in homogeneous situations, comparat
little is known on their dynamics in the presence of quench
disorder, which is expected to play a role in many physi
PRE 601063-651X/99/60~2!/1212~27!/$15.00
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realizations. It can be introduced in the models in seve
ways, e.g., in the reaction rates or in the single particle
fusion. One can expect that it will strongly modify the b
havior of the system in some cases by amplifying the role
spatial density fluctuations. These effects are interesting,
difficult to study analytically because of the present lack
methods, beyond mean-field approximations or perturba
theory, to treat the dynamics of such disordered systems

Even in the absence of quenched disorder, there is
apparently unlimited variety of behaviors in reaction diff
sion systems. The more complex ones, such as oscillator
chaotic behaviors, become possible for a large enough n
ber of species@12–15#. In simpler cases, attempts have be
made to identify possible universality classes, and a w
class of models with finite reaction rates, amenable to fi
theoretical treatments, has been studied@16,17#. For instance,
branching and annihilating random walks~BARW!, i.e., re-
actions such asA˜mA andA1A˜0 or A˜0, exhibit tran-
sitions from inactive~no particle! to active states, which
were found to be either in the universality class of direc
percolation@18–20# ~odd number of offsprings! or in the
so-called parity conserving class~even number of offsprings!
@17#. This was confirmed by exact results in one dimens
@21#. Related types of models describe epidemy propagat
such asA1B˜2B ~with rate k), and eitherB˜A ~recov-
ery! or B˜C ~immune! ~rate 1/t) were also studied via RG
@22# ~see@23# for review!. The effect of quenched disorde
has been studied in this class of BARW models, via rand
ratesk(x) andt(x) but with limited success as the RG flow
1212 © 1999 The American Physical Society
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PRE 60 1213REACTION DIFFUSION MODELS IN ONE DIMENSION . . .
to strong coupling@23#. As for directed percolation with dis
order, it is still a largely open problem@24–26#.

There is a simpler class of homogeneous models with
branching~i.e., without particle production!, such asA1A
˜0, A1A˜A @27,28#, A1B˜0 @29,30#, etc., which has
still nontrivial behavior@31#. One interesting phenomenon
that in low enough dimension, the process becomes diffus
limited rather than reaction limited. Indeed particles in clo
proximity react quickly and the remaining particles are ty
cally separated by a length related to the pure diffus
length L0(t);(Dt)1/2. This leads to a decay of specie de
sity, e.g.,nA(t);t2d/2 for d,2 in the case ofA1A˜0,
slower than the mean-field predictionnA(t);t21 valid for
d.2 ~for A1B˜0 a related argument leadsnA(t);t2d/4

for d,4) @29#. These types of results for such models in t
pure case are well established from heuristic arguments,
merical simulations, perturbative RG@27,28,32#, and in some
cases rigorous methods@33,31#. It is now interesting to in-
vestigate how disorder will modify these behaviors. W
disorder, models in this class are easier to study than
BARW-type models, although it is still a difficult task. Th
reactionsA1A˜0 andA1B˜0 have been studied usin
perturbative field theoretic RG methods for particles diffu
ing in random flows, either in two dimensions@34,35# or in a
special hydrodymamic flow@36#. As can be expected from
the study of single particle diffusion in such flows@37,38#,
the behavior should be qualitatively different in the case
potentialdisorder, which tends to segregate the particles
slow the reaction~and the diffusion!, than forhydrodynamic
flows, which tend to mix the particles and increase the eff
tive reaction rate~and lead to hyperdiffusion!. The competi-
tion which arises when both components are present
been studied very recently ind52 @34# and ind522e @39#.
Remarkably, the one-dimensional problem seems quite
from the reach of such perturbative RG methods and no
neric result is available at present@40# in that case, hence th
interest of the present study. Indeed, ind51 only potential
disorder can exist and is known to lead to ultraslow sin
particle diffusion described by a strong disorder~i.e., zero
temperature! fixed point@41#. To make progress ind51 re-
quires developing nonperturbative techniques, which is
aim of the present work.

B. Model

In this paper we study a broad class of reaction diffus
models where particles diffuse on a one-dimensional lat
and can react or annihilate upon meeting. Apart from th
reactions the particles are noninteracting. More specifica
each site of the lattice can be in one of several poss
‘‘states,’’ labeledk50,1, . . . ,n21. k50 corresponds to the
empty state with no particle present at that site.k
51, . . . ,n21 corresponds to the presence of particles
different types. When two particles~i.e., states! k1.0 and
k2.0 meet, they react and give another statek with a prob-
ability Wk1 ,k2

k . k may be the empty statek50, correspond-

ing to an annihilation. The reaction is thus a stochastic p
cess

k11k2˜k with probability Wk1 ,k2

k ~1!
ut
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characterized by a fixed transition probability matrix whi
satisfies

(
k

Wk1 ,k2

k 51. ~2!

The matrixWk1 ,k2

k can be extended to includek150 by de-

fining

W0,k8
k

5Wk8,0
k

5dk,k8 ~3!

for any k,k8, which is the property expected for an emp
state (A10˜A with probability 1!.

One prominent example will be identical particlesA
which react upon meeting as

A1A˜0” with probability r ,

A1A˜A with probability 12r .
~4!

In this case there are only two states:k50 corresponds to no
particule present (0” ) and k51 to one particule presentA.
The transition matrix is thenW0,0

0 5W0,1
0 5W1,0

0 5W0,0
1 50,

W0,1
1 5W1,0

1 51, andW1,1
0 5r ,W1,1

1 512r .
We will obtain results for processes within the abo

class~1! and study some specific examples. We will restr
ourselves to symmetric reaction ratesWk1 ,k2

k 5Wk2 ,k1

k .

Asymmetric rates, depending on the side from which the t
species come in contact, can be defined ind51 and can be
studied by the same methods. We will mostly consider re
tion diffusion processes with only afinite number of possible
states~or species!. Processes with an unbounded number
states (n5`) can also be studied by the present method, a
we will give some examples. Classifying the much larg
variety of complex behavior possible in that case is beyo
the scope of the present study. Other extensions include
domness in the reaction rates, which we will briefly discu
in the end.

Up to now we have not specified the way in which pa
ticles diffuse, nor the reaction rates. Let us first concentr
on the process~4! and recall the known results in the case
pure diffusion~i.e., homogeneous hopping rates!, which has
been extensively studied. It is of particular interest in o
dimension since it is also a model for zero temperature
main growth in the ferromagneticq-states Potts model~with
Glauber dynamics!, where r 51/(q21) @11#. The caseq
52 ~Ising! corresponds to walkers~i.e., domain walls! al-
ways annihilating when they meet andq5` to walkers al-
ways coagulating@42#. It is known that the reaction rate ca
be chosen infinite~immediate reaction upon meeting! with-
out changing the universality class, and the same will h
here in the presence of disorder, hence our general choic
model~1!. For all r the concentration of particlesA is known
to decrease as

nA~ t !'c~r !~Dt !21/2, ~5!

where the (r -dependent) coefficient is expected to be unive
sal @e.g., c(1)5(8p)21/2 @43##. More detailed properties
such as persistence, have also been studied. The proba
S(t) that no particleA ~domain wall! has crossed a given
point O up to timet has been shown to decay as
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1214 PRE 60PIERRE Le DOUSSAL AND CE´CILE MONTHUS
S~ t !;L0~ t !2u(r ), ~6!

where L0(t);At is the characteristic length andu(r ) the
so-called persistence exponent.S(t) also corresponds to th
probability that a spin has never been flipped up to timet in
the Potts model. The exact expression ofu(r ) was obtained
in @11,44#. The domain size distribution has also been co
puted for this process in@45#. Two new independent expo
nents,c and d, were introduced and studied in@46,47# to
characterize the persistence~survival! of domains for this
model, but as of now no exact result is available for the
exponents. The concept of persistence properties was
tended to other observables, finite temperature, and stud
variety of other models: persistence for global order para
eter@10#, spin block persistence@48#, generalized persistenc
and large deviations@49,50#, and persistence for fluctuatin
interfaces@51#.

In this paper we study the case where the hopping r
are inhomogeneous with short range correlations, co
sponding to random local bias. The generic model for t
type of disorder is the Sinai model where each particle p
forms Arrhenius diffusion in the same energy landscapeUn
where the local random forcesUn2Un11 are independen
random variables of zero average~we restrict the presen
analysis to zero global bias!. Various analytical results ar
known for the single particle Sinai model@52–58#. Diffusion
is ultraslow asx;L(t)5(ln t)2. Recently we have reexam
ined this model@59,60# using a real space renormalizatio
group method~RSRG! which yields exact results at lon
time. In the present paper we apply the RSRG method
study reaction diffusion of the type~1! for particles in a Sinai
landscape. Some of the results have already appeared in@59#.
Although we give here a detailed treatment of the react
diffusion RSRG, we will rely on Ref.@60# for all details
concerning the single particle diffusion aspects of the pr
lem ~which we will only sketch, referring the reader to@60#
for details!. Note that we consider here only models whe
all particles share the same diffusion property~i.e., see the
same landscape and have the same diffusion coefficie!.
Thus this does not include reaction diffusion models such
Ising domain walls in a random field, for which a speci
treatment is necessary and which are studied in@59,61#.
Similarly, relations to other problems such as disorde
quantum spin chains@62–65# or disordered free fermion
models are discussed in@59,60#. In particular, we have cho
sen to discuss our present results exclusively in terms
reaction diffusion dynamics, and not in their equivalent fo
mulation as~non-Hermitian! 1D quantum models~see@66#
for details of such relations in the pure case!. Finally, note
that an exact RG has also been applied to the problem
coarsening of the pure 1DF4 model at zero temperature fo
which persistence exponents have been computed@7,67#.

As for the single particle problem, the RSRG method
lows us to compute a number of quantities, and, remarka
even some which are not known for the corresponding p
model ~e.g., the domain persistence exponentsd and c).
This makes the disordered case all the more interestin
study. We find that reaction diffusion processes in a Si
landscape are strongly controlled by the ultraslow diffusi
e.g., the relevant length scale is the diffusion lengthL(t)
;(ln t)2, but that they still possess nontrivial reaction pro
-
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erties. We will characterize a broad set of universal
classes, containing all reactions of type~1!. The reaction
times ~provided they are finite! do not affect any universa
quantity, so that we can consider the reactions as insta
neous for practical purpose. As discussed in@60#, there are
other single particle diffusion models with short range c
related disorder in one dimension apart from Sinai’s mo
universality class, such as random barriers~symmetric hop-
ping rates! or random wells. For interesting behavior to o
cur, however, algebraically broad distributions are requi
from the start. Some results for reaction diffusion proces
with this type of single particle diffusion have been obtain
in @68#.

The outline of the paper is as follows. In Sec. II we det
the RSRG method, first recalling known results in the case
a single particle in Sec. II A, then deriving the RSRG equ
tion for reaction diffusion models in Sec. II B. The fixe
points of this equation, and some physical properties of
corresponding asymptotic states, are studied in Secs. II C
II D, respectively. Section III is devoted to a detailed ana
sis of the dynamics near attractive or repulsive fixed poi
and of the convergence towards the asymptotic sta
Throughout the paper we apply our results to the process~4!
but in Sec. IV we discuss some applications to other
amples of processes. In Sec. V we study persistence pro
ties. Section VII contains the conclusion. Some more tech
cal but useful details are contained in the Appendixes.

II. RSRG METHOD FOR REACTION DIFFUSION
AND ASYMPTOTIC STATES

A. RSRG for Sinai landscape and single particle diffusion

The model for the diffusion of a single particle in on
dimension can be defined, with no loss of generality@59#, as
the Arrhenius diffusion in a ‘‘zigzag’’ potentialU(x) repre-
sented in Fig. 1~a!. It consists in a set of bonds, each bo
~betweenxi andxi 11) being characterized by an energy ba
rier Fi5uUi2Ui 11u @where Ui5U(xi)] and a length l i
5uxi 112xi u. The energy landscape is chosen by choosin

FIG. 1. ~a! Energy landscape in the Sinai model~b! decimation
method: the bond with the smallest barrierFmin5F2 is eliminated,
resulting in three bonds being grouped into a single one.
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PRE 60 1215REACTION DIFFUSION MODELS IN ONE DIMENSION . . .
pair of bond variablesF,l , independently from bond to bond
from a distributionP(F,l ) normalized to unity.

The RG procedure, which captures the long time beha
in a given energy landscape, is illustrated in Fig. 1~b! and
consists in the iterative decimation of the bond with t
smallest barrier@59#, sayF2, and to replace the three bond
1,2,3 by a single renormalized bond with barrierF85F1
2F21F3 and lengthl 85 l 11 l 21 l 3. The new variables re
main independentfrom bond to bond. To write the corre
sponding RG equation it is convenient to introduceG as the
smallest remaining barrier at a given stage of the decima
and the rescaled variablesh5(F2G)/G and l5 l /G2. The
RG equation for the probability distribution@69# PG(h,l)
reads@59#

@G]G2~11h!]h22l]l23#PG~h,l!

5PG~0,• !* lPG~•,• !* h,lPG~•,• ! ~7!

and coincides with the one derived in@63# for the closely
related problem of disordered quantum spin chains. T
symbol* l denotes a convolution with respect tol only and

* h,l with respect to bothh andl. The probability distribu-
tion is normalized to unity as*0

1`dh*0
1`dlPG(h,l)51.

The landscape is characterized by the large scale vari
of the potential

~Ui2U j !
2'2su l i 2 j u ~8!

with l i 2 j the distance from sitei to site j, which is exactly
preserved by the RG. Thus we will sets51 in the follow-
ing. Restorings simply amounts to a rescaling of length
and in particulars drops out of all ~universal! ratios of
lengths that we consider later. As shown in@63,64#, the RG
equation~7! leads at largeG ~using Laplace transforms! to
the following fixed pointP* (h,l):

P* ~h,l!5LTs˜l
21 S As

sinhAs
e2hAscothAsD . ~9!

Thus for largeG one finds that the average bond lengthl̄ G

and the number of bondsnG per unit length are@70#, respec-
tively,

l̄ G5
1

2
G2, nG5

2

G2
. ~10!

The renormalized landscape allows us to study the
namics of a single walker starting from a given pointO at
t50. The decimation of barriers smaller than

G5T ln t ~11!

corresponds to the elimination of~logarithmic! time scales
shorter than the Arrhenius timet for the particle to cross the
barrier. We are choosing everywhere time units such that
~nonuniversal! microscopic attempt time scalet0 be set to
unity @arbitrary units can be recovered by settingG
5T ln(t/t0) in what follows @71##. Since at long time~i.e.,
largeG) the renormalized landscape consists entirely of d
valleys separated by high barriers, a good approximatio
the long time dynamics is to place the walkerat the bottom
r

n

e

ce

-

e

p
to

of the renormalized valley at scaleG5T ln t which contains
the starting pointO, since with high probability it will be
near to that point@52#. Upon proper rescaling of space an
time this approximation becomes in factexactasG tends to
1`. This defines what we will call the ‘‘effective dynam
ics’’ in the following and is illustrated in Fig. 1. This allow
us to recover the scalingx;(ln t)2 for the single particle
diffusion as well as many other exact results detailed
@59,60#. Since it is customary, when studying reaction diff
sion processes, to compare densities of reactants with a c
acteristic scale of diffusion, we give here the the exact
pression for the single particle root-mean-squa
displacement, or ‘‘diffusion length’’ at large time:

A^x2~ t !&'
1

6
A61

5
T2~ ln t !2. ~12!

To study reaction diffusion processes it will be necess
to consider ‘‘valleys’’ ~two consecutive bonds sharing
common potential minimum!. We thus slightly generalize
the above RG equation~7! to follow the distribution of
renormalized valleys. The RG equation for the valley pro
ability distribution PG(h1 ,h2) at scaleG in rescaled vari-
ables (h1 ,h2) reads

G]GPG~h1 ,h2!

5@~11h1!]h1
1~11h2!]h2

12#PG~h1 ,h2!

1PG~h1 ,• !* h2
PG~0,• !1PG~•,0!* h1

PG~•,h2!, ~13!

where we have omitted~i.e., integrated over! the lengths for
simplicity. The large time (G) behavior of this equation can
be studied similarly. Valley distributions which have the d
coupled form PG(h1 ,h2)5PG(h1)PG(h2), where PG(h)
satisfies the bond RG equation~7!, are of course solution o
the RG equation for valleys~13!. The subspace of such de
coupled distributions~called decoupled subspace in the fo
lowing! is thus preserved by RG. Since the initial conditio
is uncorrelated, the RG flow defined by Eq.~13! remains in
this decoupled subspace, and converges towards the
point P* (h1 ,h2)5P* (h1)P* (h2)5e2h12h2. This conver-
gence result extends to the case of small correlations
tween valley sides as will be discussed below.

It was shown in@64# that the convergence towards th
bond fixed pointP* (h)5e2h is like 1/G with eigenvector
(12h)e2h. Thus the convergence towards the valley fix
point P* (h1 ,h2)5e2h12h2 within the decoupled subspac
is of the form

S e2h11
c

G
~12h1!e2h11••• D

3S e2h21
c

G
~12h2!e2h21••• D

5e2h12h2S 11
c

G
~22h12h2! D1••• ~14!

and is also as 1/G with eigenvector (22h12h2)e2h12h2.
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B. RG equations for reaction diffusion

We now turn to diffusion reaction models of type~1! in
one-dimensional landscapes with random local biases.

From the results on the dynamics of a single particle i
Sinai landscape recalled in the preceding section, it is c
that one can study most of the properties of the initial re
tion diffusion problem by following its evolution under th
effective dynamics. It also becomes obvious that one m
now consider valleys, and the species contained in these
leys. At the decimation time scaleG5T ln t in some places
in the system, two valleys will merge into one and the re
tion ~1! governed by the rates matrixW will take place. This
process is illustrated in Fig. 2. The errors made by this
proximation are expected to become again smaller at la
time, as will be discussed later on.

The general method to study the process~1! is thus to
associate to each valley the specie which it contains, whic
one of several possible statesk (k50 being the empty
state!. A convenient initial model is thus one where ea
valley and its content is statistically independent and cha
terized by a probability distributionPk

G(h1 ,h2) with
(kPk

G(h1 ,h2)5PG(h1 ,h2). It remains so under the RG
The effective dynamics is described by the RG equation

G]GPk
G~h1 ,h2!

5@~11h1!]h1
1~11h2!]h2

12#Pk
G~h1 ,h2!

1Wk1 ,k2

k @Pk1

G ~h1 ,• !* h2
Pk2

G ~0,• !

1Pk1

G ~•,0!* h1
Pk2

G ~•,h2!#, ~15!

where summation over repeated indices is implied. The s
mation overk yields back the valley RG equation~13!. Since
the average length of a valley is 2l̄ G , the total concentration
nk(t) of a given speciek ~the total number ofk particles per
unit of length! is given as

nk~ t !5
1

2
nGpk

G , ~16!

FIG. 2. ~a! Macroscopic state of the reaction diffusion proce
each renormalized valley is either empty (k50) or contains a par-
ticle of type k.0 ~b! at time scalet such that the barrierF5G
5T ln t is decimated, the state~particle! k1 in the decimated valley
moves to the neighboring valley and reacts withk2 to producek
with probabilityWk1 ,k2

k , as the two valleys are merged into a sing
renormalized one containingk.
a
ar
-

st
al-

-

-
e
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c-

-

where

pk
G5E

h1 ,h2

Pk
G~h1 ,h2! ~17!

andnG is the number of remaining bonds~10! per unit length
at scaleG5T ln t. We stress that the RG equation~15! is
more complicated to analyze than Eq.~13! since it cannot in
general be factorized into bond distributions.

However, it turns out that there is still a simple subspa
of distributions which is exactly preserved by the RG equ
tion ~15!. It is the subspace of functions of the sumh1
1h2,

Pk
G~h1 ,h2!5Hk

G~h5h11h2!, ~18!

where the functionsHk(h) satisfies

G]GHk
G~h!5@~21h!]h12#Hk

G~h!

1Wk1 ,k2

k Hk1

G ~• !* h Hk2

G ~• !, ~19!

which conserves the normalization (kpk
G

5*0
`dh h(kHk

G(h). This subspace plays an important ro
in the following. Already one sees that both the fixed po
e2h12h2 and the leading eigenvector (22h12h2)e2h12h2

of the linearized landscape RG equation~13! belong to this
subspace.

C. Fixed points of the RG equations and asymptotic states

We now determine the fixed point solutions of the R
equation for the valley distributions~15!. We already know
that the sum(kPk

G(h1 ,h2)5PG(h1 ,h2) converges towards
the fixed point of Eq.~13! P* (h1 ,h2)5e2(h11h2) which
describes the landscape. It is thus natural to look for fix
points of Eq.~15! of the following form:

Pk* ~h1 ,h2!5pk* P* ~h1 ,h2!5pk* e2(h11h2), ~20!

wherepk* >0 and(kpk* 51 by normalization. Plugging this
form into Eq.~15! leads to a consistentG-independent solu-
tion if the pk* satisfy the condition

pk* 5Wk1 ,k2

k pk1
* pk2

* . ~21!

Note that any solution of this equation satisfiesa priori
(kpk* 50 or 1, as a consequence of Eq.~2!. Thus apart from
the unphysical solution of Eq.~21! where allpk* vanish, all
other solutions are automatically correctly normalized.

In general, Eq.~21! has several solutions and thus the
are several fixed points to the valley equations~15!. Clearly
some of these fixed points are attractive and correspon
possible large time asymptotic states for the reaction di
sion process while other fixed points are repulsive. In so
cases several attractive fixed points can coexist and lead
nontrivial phase diagram.

The stability of each fixed point, as well as their conve
gence property, will be studied in detail in the next sectio
Here we just mention one important result. The dynamics
the vicinity of a fixed pointpk* is determined by the follow-
ing stability matrix:

:
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Mk j5Wk8, j
k pk8

* . ~22!

We denote byma the eigenvalues ofM, and bypj
a the asso-

ciated eigenvectorsMk jpj
a5mapk

a . For n21 reacting spe-
cies ~in addition to the empty statek50), M is an
n-dimensional matrix with non-negative elements. One
genvalue is trivial, being simplym151 of eigenvector
pk

a51}pk* ~21!. The other n21 eigenvalues ma (a
52, . . . ,n), which can be complex in general, have
smaller modulus, due to the Perron-Froebenius theorem.
will focus in the following on simple enough process
where allma are real, but we will also give example of mo
general reaction diffusion where complex eigenvalues a
~e.g., reactions with cycles!.

Let us consider here only fixed points with allma being
real. The result of the next section is that, in that case
given fixed point if attractive is then21 eigenvaluesma
,1/2 for a52, . . . ,n. It is repulsive if at least one of thes
ma.1/2 ~and is then repulsive along the correspond
eigendirection!.

For example, in the case of the reaction diffusion proc
~4!, there are two solutions of Eq.~21! and thus two fixed
points. One is the empty stateE5(p0* 51,pA* 50) and the
other isS5„p0* 5r /(11r ),pA* 51/(11r )…. The stability ma-
trix associated toE is simply the 232 identity matrix~i.e.,
m1515m2) and this fixed point is thus repulsive. The m
trix associated to the stateS reads MS5„(r /r 11,r /r
11),(1/(r 11),1/(r 11)… with eigenvaluesm151 and m2
50. The fixed pointS is thus attractive and corresponds
the asymptotic state which represents the large time beha
of the system.

In fact, the reaction diffusion process~4! possesses a
interesting property: the outcome of a sequence of react
does not depend on the order it was performed. We call th
processes ‘‘associative processes.’’ They have the prop
that M25M , i.e., m50,1. Some properties of these assoc
tive processes are detailed in Appendix B.

D. Physical properties of the asymptotic states

We now study some physical consequences. Each at
tive fixed point corresponds to a possible large time beha
of the system, i.e., an asymptotic state. If there are sev
attractive fixed points, the one chosen by the system
depend on the initial value of the parameters~mainly the
specie concentrations!.

From the results~20! and ~10! we obtain that in an
asymptotic state@characterized by a set ofpk* solution of Eq.
~21!#, the density of speciek behaves at large time as

nk~ t !5
1

2
nGpk* 5

pk*

T2ln2~ t/t0!
, ~23!

where we have restored the microscopic attempt time s
t0 @72#. Note that this result~23! represents the leading larg
time contribution; subleading corrections~which become
dominant only ifpk* 50) will be determined in the next sec
tion. Interestingly, this leading behavior is independent
the initial concentration~provided it is in the basin of attrac
tion of the fixed point!. This universality property can b
i-
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further characterized by computing universal amplitudes
pure models a commonly studied amplitude is the produc
specie concentration by the diffusion volume. In a disorde
model one has more choices of definitions, but we will defi
an amplitude as in@39#. Here we find the exact result for th
following universal amplitude~associated to speciek):

Ak[ lim
t˜`

nk~ t !A^x2~ t !&5pk*
1

6
A61

5
. ~24!

This gives, for instance,A(r )51/(11r ) 1
6A 61

5 for the pro-
cess~4!, i.e.,A50.291 071 . . . forA1A˜0 studied in@39#
by perturbative methods@73#.

From the statistical independence of valleys in
asymptotic state, information about the spatial distribution
the species can also be obtained. For instance, one can d
‘‘domains’’ in the simplest case as intervals between p
ticles ~i.e., between nonempty stateskÞ0, irrespective of
their content!. We can now compute exactly the distributio
of the size of ‘‘domains.’’ From the above form of the fixe
points, the normalized distributionDG( l ) of domain sizesl in
an asymptotic state takes a scaling formDG( l )
5(1/G2)D* (l5 l /G2) which can be computed as follows.

The above RG equation for valley distributions~15! can
be readily extended toPk(h1 ,h2 ,l1 ,l2) which takes into
account the rescaled lengthsl15 l 1 /G2, l25 l 2 /G2 of the
two bonds of the valley, extending Eq.~7!. The generalized
fixed point ~20! reads

Pk* ~h1 ,h2 ,l1 ,l2!5pk* P* ~h1 ,l1!P* ~h2 ,l2!, ~25!

where P* (h,l) is the fixed point solution~9! of the bond
RG equation. A domain as defined above is thus a se
consecutive empty valleys between two occupied valleys,
gether with one bond in each of the occupied valleys~see
Fig. 2!. Since in the asymptotic state valleys are statistica
independent and are either empty (k50) with probability
p0* P* (l1)P* (l2) @where P* (l)5*hP* (l)] or contain a
particle (kÞ0) with probability (12p0* )P* (l1)P* (l2),
one easily obtains the Laplace transform ofD* (l) as

D̂p
0*

* ~s!5E
0

1`

dl e2slD* ~l!

5
~12p0* !P* ~s!2

12p0* P* ~s!2
5

12p0*

cosh2As2p0*
, ~26!

where we have used the explicit form~9! for the fixed point
bond distribution. Formula~26! can be inverted and yield
the distribution of rescaled domain sizes:

Dp
0*

* ~l!5tana (
n52`

1`

~a1np!e2l(a1np)2
, ~27!

5
tana

Apl3/2 (
m52`

1`

msin~2am!e2m2/l

~28!

with a5arccosp0* .
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This can be applied, e.g., in the case of the process~4!.
Substitutingp0* 5r /(11r ) in Eq. ~28! yields the distribution
of distances between neighboring walkersA. Note that the
case where walkersA always coalesce upon meetingr
50,p050) corresponds toa˜p/2 and in this limit Eq.~28!
becomes

Dp
0* 50

* ~l!5 (
n52`

1`

@2lp2~n11/2!221#e2lp2(1/21n)2

~29!

5
2

Apl3/2 (
m52`

1`

~21!m11m2e2m2/l.

~30!

It is interesting to compare the result~28! concerning the
disordered case with the result of Derrida and Zeitak@45# for
the case of homogeneous hopping rates. For small dom
sizes (l˜0), the distribution vanishes much faster in t
disordered case@as;l23/2exp(21/l)] than in the pure case
~as ;l). For large domain sizes (l˜`), both have expo-
nentially decaying behavior~except forq51`, i.e., r 50 in
the pure case!. In addition, in the present case the conse
tive domains lengths are statistically independent, which
not the case for the pure system.

The above calculation is easily generalized to compute
distribution of relative distances between two walkers o
given speciesk, simply by substitutingp0*˜12pk* in the
above formula~28!.

III. DYNAMICS NEAR FIXED POINTS AND ASYMPTOTIC
STATES

In this section we study the dynamics near the poss
fixed points of the valley RG equation~attractive and repul-
sive!.

We will first focus strictly on the effective dynamics ex
actly described by the RG equation~15!, and mention some
possible corrections in the real dynamics at the end of
section.

For the effective dynamics we will solve the problem
two steps. As mentioned above, the matrixM in Eq. ~22! and
its eigenvaluesma control the asymptotic dynamics. Interes
ingly they readily provide an approximation of the dynamic
which we will call the ‘‘uniform approximation,’’ which is
interesting as it allows us to classify the spectrum of eig
perturbations and, in the case of real eigenvalues, alre
allows us to see whether a given fixed point is stable
unstable.

In a second step we will obtain the exact results for
spectrum of eigenperturbations.

A. First step: Uniform approximation

It is natural to define the total occupation probability
speciek at scaleG5T ln t as pk

G5*h1 ,h2
Pk

G(h1 ,h2). The
difficulty of the problem comes from the fact that it does n
satisfy a closed equation. However, if one also introdu
pk

G(0)5*h2
Pk

G(0,h2)5*h1
Pk

G(h1,0), i.e., the occupation
in

-
is

e
a

le

e

,

-
dy
r

e

t
s

probability of speciek of the valleys just being decimated a
G, one can obtain a closed coupled equation by integratio
Eq. ~15!, which reads

G]Gpk
G52@2pk

G~0!1Wk1 ,k2

k pk1

G ~0!pk2

G #. ~31!

It is then tempting to set, as an approximation,pk
G(0)5pk

G .
This would be correct at any of the fixed points~20!, but
since we are studying convergence to a fixed point, it is
approximation which amounts to neglecting the dynami
correlations between the deviations in the specie concen
tion and in the distribution of barriers heights. For this reas
we call it the ‘‘uniform approximation.’’ It yields the follow-
ing approximate closed RG equation for thepk

G :

G]Gpk
G52~2pk

G1Wk1 ,k2

k pk1

G pk2

G !, ~32!

which preserves the normalization condition(pk51. This
approximate flow has the same fixed pointspk

G5pk* as the
true one~21!. This equation, remarkably, is reminiscent of
‘‘mean-field type’’ rate equation, except that the role
‘‘time’’ would be played by the variable ln(T ln t).

The relaxation of Eq.~32! towards any of these fixed
points is studied by settingpk

G5pk* 1 f k
G and linearizing for

the small perturbationf k
G around the fixed pointpk* . It

yields, in terms of the matrixM introduced in Eq.~22!,

G]G f k
G52~2 f k

G12Mkk8 f k8
G

!, ~33!

and thus the convergence towards the fixed point has c
ponents behaving asG2La, where the exponents are given
terms of the eigenvaluesma of the matrix M as La52(1
22ma) with a52, . . . ,n.

So this ‘‘uniform approximation’’ would indicate that a
fixed point is stable if all Re(ma),1/2 for all a52, . . . ,n,
and unstable otherwise. Remarkably, this stability criter
coincides with the exact resultwhen the eigenvalues are rea
as we will now show, even if the naive convergence eig
valuesLa are not correct~they are ‘‘renormalized’’ to larger
absolute values!.

B. Second step: Full dynamics near a fixed point

Up to now we have studied the convergence of the la
scape alone~13!, and the convergence of thepG within a
uniform approximation assumingpG(0)5pG.

We now study the full dynamics near a fixed point so
tion of the full reaction diffusion equations~15!. We will
indeed find that there are some correlations between de
tions in total occupation probabilities~from the fixed point
concentrations! and deviations in the barrier distribution pro
file ~from the simple fixed point shapee2h), resulting in
deviations with respect to the uniform approximation.

We thus consider a perturbation around the fixed poin
the form

Pk
G~h1 ,h2!5@pk* 1ck

G~h1 ,h2!#e2(h11h2) ~34!

and linearize the equation for the perturbationck
G(h1 ,h2),
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G]Gck
G~h1 ,h2!

5@~11h1!]h1
2h11~11h2!]h2

2h2#ck
G~h1 ,h2!

~35!

1Mk1 ,k2S E0

h1
dh8@ck1

G ~h8,h2!1ck1

G ~h8,0!#

1E
0

h2
dh8@ck1

G ~h1 ,h8!1ck1

G ~0,h8!# D , ~36!

where we have used the symmetry of theW, and the defini-
tion of the matrixM ~22!.

Note that in the end we are interested in the behavio
the species proportions

pk
G5E

h1 ,h2

Pk
G~h1 ,h2!5pk* 1ek

G,

where

ek
G5E

h1 ,h2

ck
G~h1 ,h2!e2(h11h2). ~37!

The normalization condition of course implies that(kek
G

50.
Decomposingck

G(h1 ,h2) upon the eigenvectorspk
a corre-

sponding to the eigenvaluesma of the matrix M as
ck

G(h1 ,h2)5(aca
G(h1 ,h2)pk

a , we obtain decoupled equa
tions for the coefficientsca

G(h1 ,h2),

G]Gca
G~h1 ,h2!

5@~11h1!]h1
2h11~11h2!]h2

2h2#ca
G~h1 ,h2! ~38!

maS E
0

h1
dh8@ca

G~h8,h2!1ca
G~h8,0!#

1E
0

h2
dh8@ca

G~h1 ,h8!1ca
G~0,h8!# D . ~39!

For a givenma , we look for solutions behaving asca
G

;G2Fa and determine the exponentFa as a function of the
eigenvaluema . Here,a priori bothma andFa can be com-
plex.

Before we study this equation for generalm we will first
study the simpler casesm50 andm51. Note that for asso-
ciative processes this will be sufficient.

1. Study for µa50

This case is important for naively stable fixed points
associative processes~which have all ma50 for a
52, . . . ,N21). The G-dependent equation~38! with ma
50 can be integrated out explicitly starting from its initi
value atG0,

ca
G~h1 ,h2!5S G

G0
D 2

e2[(G/G0)21](h11h212)

3ca
G0S G

G0
~11h1!21,

G

G0
~11h2!21D , ~40!
f

f

and thus the convergence of proportionspk
G towardspk* is

governed by Eq.~37!,

ea
G5E

0

`

dh1E
0

`

dh2ca
G~h1 ,h2!e2(h11h2)

5E
(G/G0)21

`

dy1E
(G/G0)21

`

dy2ca
G0~y1 ,y2!e2(y11y2).

~41!

So for generic initial perturbationsca
G0(h1 ,h2) that are not

exponentially growing ash1,2˜`, we obtain that the con-
vergence towards the fixed point is exponential inG. Note
that here this exact result is very different from the na
approximation which would predict a convergence asG2L

with L52. To understand why this is so, one can comp
from the exact solution~41! the ratio

pk
G~0!2pk*

pk
G2pk*

;
G

G0
, ~42!

which is found to grow withG. This is why the uniform
approximation is particularly bad for this case where it p
dicts a power law instead of the exponential convergenc
G.

2. Study for µa51

To study the dynamics~38! in the casema51, it is useful
to introduce the functionha

G(h1 ,h2)5]h1
]h2

ca
G(h1 ,h2),

since it satisfies the closed simpler equation

G]Gha
G~h1 ,h2!5@~11h1!]h1

1~11h2!]h2

122h12h2#ha
G~h1 ,h2! ~43!

that gives after integration from an initial condition atG0

ha
G~h1 ,h2!5S G

G0
D 4

e2[(G/G0)21](h11h212)

3ha
G0S G

G0
~11h1!21,

G

G0
~11h2!21D ,

~44!

and thus for initial conditionsha
G0(h1 ,h2) that are not expo-

nentially growing ath1,2˜`, we obtain that the functionha
G

converges towards 0 exponentially inG. This means that the
perturbationsca

G converge exponentially inG towards the
decoupled subspace

ca
G~h1 ,h2!5ca

G~h1!1ca
G~h2!. ~45!

We now study the convergence towards the fixed point
that decoupled subspace to see if there are solutions be
ing asca

G(h);G2Faca(h): the equation forca(h) reads

2Faca~h!5@~11h!]h2h#ca~h!

12E
0

h
dh8ca~h8!1hca~0!. ~46!
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The only well-behaved solutions are found to be

Fa511, c~h!5ca~0!~12h!, ~47!

Fa522, c~h!5ca~0!~112h!. ~48!

The first solution corresponds to the convergence asG
of the landscape discussed previously. This is not surpris
since the linearized RG equation~13! is exactly Eq.~38! with
m51. Note that Eq.~44! shows that small correlations be
tween barriers in the same valley decrease exponentially
in G towards the subspace of statistically independent dis
butions. Since this landscape eigenvector satisfiesea

G

5*h1 ,h2
ca

G(h1 ,h2)e2(h11h2)50, it does not affect the spe

cies proportionspk
G . It is the second eigenvector in Eq.~48!

which is relevant for the reaction diffusion processes si
ea

GÞ0. It corresponds to the unstable eigenvalue~growth as
G2) associated to a naively unstable fixed point~e.g., of an
associative process!. Note that in that case, the unstable
genvalue foundF522 coincides with the naive valueL
52(122m)522 of the uniform approximation.

Physically, this eigenvalue can be understood for, e.g.,
process~4!. The unstable fixed point is the empty stateE
with p051, pA50. Now if one starts att8 very close to the
fixed point, there are very fewA and their number should no
vary at first, as they will rarely meet. This is indeed exac
what the above result says, namely,

nA~ t !5
1

2
nGpA

G;
1

T2ln2t
S pA* 1@pA~ t8!2pA* #

ln2t

ln2t8
D

~49!

and using thatE haspA* 50.

3. Study for general µ

We now study the case of a generalma . It turns out that
one can find the solution of the original Eq.~38! under the
form

ca
G~h1 ,h2!5G2FaHa~h11h2!, ~50!

where the functionHa(z) satisfies the differential equation

05~21z!Ha9 ~z!1~Fa112z!Ha8 ~z!1~2ma21!Ha~z!
~51!

together with the boundary condition 2Ha8 (0)1FaHa(0)
50.

The only well-behaved solution atz˜` is the confluent
hypergeometric functionHa(z)5U(122ma ,31Fa ,21z),
and the boundary condition atz50 determines the possibl
exponentsFa that should satisfy 2U8(122ma ,31Fa ,2)
1FU(122ma ,31Fa ,2)50. Using the identity
zU8( A,B,z)2(z 1 1 2 B)U( A,B,z) 52U(A21,B21,z),
this equation forFa reduces to

U~22ma ,21Fa ,2!50. ~52!
/
g

st
i-

e

e

We now discuss the behavior of the solutions of this eq
tion. One must distinguish two cases.

4. Real µ

Let us start withm real. As mentioned above, one mu
havem<1. For m51, Eq. ~52! reduces toF21F2250,
which admits the two rootsF51 andF522 and one thus
recovers the eigenvalues~48!. Equation ~52! continues to
admit two finite roots whenm belongs to the interval12 ,m
<1, which we denoteF1(m) and F2(m) @with F1(1)
51 and F2(1)522]. The behavior of these roots as
function of m is plotted in Figs. 3 and 4. Asm is decreased
from 1, F1(1) increases and diverges whenm˜1/21 while
F2(m) increases from22 to F2(1/2)50. Form,1/2, Eq.
~52! admits only one finite rootF(m)5F2(m) which is
positive and withF(1/2)50 andF(m)˜1` asm˜01.

Again we can see from the exact solution above why
uniform approximation is not valid. In terms of the domina
a mode, the ratio

FIG. 3. Plot of the exponentF (F2) as a function of the eigen
valuem. It vanishes atm51/2 and diverges asm˜0. The result of
the uniform approximation is plotted as a dashed line.

FIG. 4. Plot of the exponentF1 as a function of the eigenvalu
m. It diverges atm51/2.
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pk
G~0!2pk*

pk
G2pk*

;

E
0

`

dzHa~z!e2z

E
0

`

dzzHa~z!e2z

[ba ~53!

goes at largeG towards the finite limitba found to be bigger
than 1 whenm,1/2. One can check that settingpk

G5pk*
1 f k

G and pk
G(0)5pk* 1b fk

G in Eq. ~31!, one obtains that the
relaxation towards the fixed point is now likeG2la(b) with
la(b)52@b2(b11)ma#. Since ba.1, the correct expo-
nent Fa5la(ba) is bigger than the naive exponentLa
5la(b51).

5. Complex µ

Next we turn to complexm. The matrixM being real, if it
has complex eigenvalues they will come in pairs,ma andma*
corresponding to complex conjugate eigenvectorspk

a and
(pk

a)* . In the uniform approximation they will combine a
f k

G5G2Re(La)r kcos@Im(La)ln G1fk
a# and correspond to os

cillatory ~growing or decaying! solutions @where L52(1
22m) is complex#. This situation happens in cyclic reac
tions, examples of which will be given below. Within th
uniform approximation the fixed point is stable to this pe
turbation if Re(m),1/2 and unstable otherwise. This, how
ever, turns outnot to be correct. Indeed the correct expone
F ~now complex! is determined by the above Eq.~52! asso-
ciated tom. One hasF(m* )5F(m)* , and to each pair of
m, m* one can associate one~or two in some cases! pair of
F,F* also corresponding to oscillatory solutions. The osc
lation frequency in the lnG variable is now given by Im(F),
and the stability being now determined by Re(F) @Re(F)
.0 corresponds to a stable eigenperturbation, while ReF)
,0 corresponds to an unstable one#.

Interestingly, Re„F(m)… is a decreasing function o
Im(m).0 as it is increased from 0. Thus the region of s
bility in the complexm plane isdifferent from the one in-
ferred from the uniform approximation. It is represented
Eq. ~5!. One notes that for complex eigenvalues one c

FIG. 5. Stability diagram: the solid line in the complex plane
m delimits the region of instability@Re(F),0 to the right of the
line# from the region of stability@Re(F).0 to the left#.
-

t

-

-

n

have a fixed point naively stable@with Re(m),1/2] which is
in reality unstable@with Re(F),0].

C. Asymptotic dynamics: Conclusion

Thus we have solved the problem of the dynamics n
the asymptotic states of the form~21! for arbitrary reaction
diffusion process. Let us summarize the results.

When the eigenvaluesma of the matrix M (22) are real,
the stability of the fixed point is determined by the followin
naive argument: a fixed point is stable ifma,1/2 for all a
52, . . . . Thedecay exponentsFa are obtained in terms o
the ma as

Fa5F@ma#, ~54!

where the functionF@x# is defined implicitly by the single
root of the equationU@22x,21F@x#,2#50 ~here 0,x
,1/2) and represented in Fig. 3.

In terms of these exponents, the large time behavior
the concentrations of the species is found to be

nk~ t !5
1

2
nGpk

G , ~55!

pk5pk* 1 (
a52,n

bk
a

~T ln t !Fa
1••• , ~56!

nG5
2

T2~ ln t !2 S 11
c

T~ ln t !
1••• D , ~57!

where theO(1/G) correction innG comes from the conver
gence of the landscape@74#. In addition, there are correction
to Eq.~55! which decay must faster, exponentially inG ~i.e.,
algebraically in time!. The bk

a are constants, depending o
the initial condition. The formula~55! can also be used to
relate two late times. If the system is very near t
asymptotic state att8, with pk(t8)5pk* 1ek , Eq. ~55! holds
at t with bk

a5eapk
a(T ln t8)2Fa, where we recall that thepk

a

are the eigenvectors ofM andek5(aeapk
a .

For practical applications it is useful to note that ratios
concentrations of different species involve only the exp
nentsFa . On the other hand, because of the factornG , the
relaxation of the concentration of a single speciek to its
asymptotic form is controlled~providedpk* .0) by the ex-
ponent min(1,F) @whereF is the minimum of all exponents
Fa appearing in the corresponding formula~55! for nk(t)].
The formula is even more interesting in the casepk* 50 ~i.e.,
if the speciek disappears in the reaction! since then the first
correction becomes the dominant decay and one has at
time that nk(t);1/(T ln t)21F. Examples of such cases a
studied in Sec. V D.

Let us stress again that the difference between the e
valueFa and the uniform approximation valueLa is due to
the fact that near the asymptotic states the ratiospk

G(0)/pk
G

differ from 1, i.e., the valleys to be decimated do not ha
the average distribution of species: there is a nontrivial m
ing between valley heights and concentration of spec
missed by the naive argument, and responsible for the n
trivial relaxation exponents found here.
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When some eigenvaluesma of the matrix M~22! are com-
plex, the fixed point is stable provided allma lie in the part
of the complex plane on the left of the curve represented
Fig. 5. The specie concentrations then relax with oscillati
as

nk~ t !5
1

2
nGS pk* 1 (

a52,n

bk
a

~T ln t !Re(Fa)

3cos@ Im~Fa!ln~T ln t !1fk
a#1••• D . ~58!

Finally, in the case wherem51/2 @or more generally on
the line Re(F)50], linear analysis is insufficient to dete
mine the evolution of the system, and one must study the
nonlinear RG equation~15!, which goes beyond the prese
study @75#.

To conclude this section, let us recall that the results
rived above concern, strictly speaking, the effective dyna
ics described by the RG equation~15!. As was discussed in
great details in Ref.@60# for the single particule diffusion
there are corrections in the real dynamics, with respect to
effective dynamics. Indeed, in the effective dynamics
whole thermal packet jumps atT ln t5G over a barrierG,
while in the real dynamics typically a fraction of a therm
packet@which can be written as 12exp(2e2G@12(T ln t)/G#/T)]
has not yet jumped at timet. Since the distribution of barrier
becomes broader and broader, this generates correc
which at large time are only subdominant for most quantit
@at mostO(1/G)] coming typically from rare events such a
degeneracy of orderO(T) between neighboring barriers
They become dominant only for certain quantities, such
the width of the thermal packet, which have vanishing le
ing order in the effective dynamics. In Ref.@60# the correc-
tions to first order inO(1/G) were evaluated and found t
originate from three rare events:~a! valleys with degenerate
minima, ~b! almost degenerate barriers, and~c! valleys just
being decimated with a barrierG1e ~see Fig. 7 of@60#!.

A similar detailed study of the rare events in the prese
of reaction processes can be performed but goes beyon
present paper. With similar arguments as in@60#, we do not
expect any correction to the leading order of the quanti
computed in this paper. In principle, subdominant corr
tions could add to the subleading terms computed abo
e.g., in Eq.~55!. They are certainly at most of orderO(1/G)
~and thus cannot affect any decay asG2F with F,1) but it
is likely that they are even of higher order. Indeed most
these corrections@e.g.,~b!# come from single particle diffu-
sion and can be reabsorbed into the global factornG . Other
events@such as~a!# cannot affect specie concentrations. A
though this point deserves further study, it is likely that t
corrections from the real dynamics to the convergence
asymptotic states obtained in this section are subdomina

IV. EXAMPLES OF PROCESSES

Up to now we have only applied the general results to
process~4!. We give here several examples of other p
cesses, starting with a process which exhibits a dynam
phase transition and to which the general results apply
rectly ~see Fig. 6!. Then we present other cases which ra
in
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interesting questions which go slightly beyond our pres
analysis.

A. A dynamical phase transition

Let us consider the system involving two speciesA andB
and the empty state 0:

A1A˜A, B1B˜B, A1B˜0. ~59!

The solutions of Eq.~21! for the fixed points are the
empty stateE5(pA* 50,pB* 50,p0* 51), the A phase (pA*
51,pB* 50,p0* 50), theB phase (pA* 50,pB* 51,p0* 50), and
the fixed pointC5(pA* 5 1

3 ,pB* 5 1
3 ,p0* 5 1

3 ).
The A phase and theB phase are attractive fixed poin

with eigenvaluesm2,350 corresponding to asymptotic expo
nential decay inG5T ln t ~i.e., a power law in time! of the
other specie. The empty state is a repulsive fixed point w
eigenvaluesm1,2,351. The critical pointC is attractive for
symmetric perturbationdpA5dpB52d0/2 corresponding to
eigenvaluem350, but unstable with eigenvaluem25 2

3 for
any dissymetric perturbationdpAÞdpB . This corresponds to

the exponent F2( 2
3 )520.761 258 @the other root is

F1( 2
3 )53.518 53]. Since it is globally attractive over th

critical manifold, this fixed point controls the dynamic
transition from theA phase toB phase. Thus we conclud
that if one starts with a system ofA and theB in almost equal
concentrations, the differenceupA(t)2pB(t)u ~or equiva-
lently the relative concentrations ofA and B) grows with
time as

upA~ t !2pB~ t !u;~ ln t !n, n50.761 258 ~60!

or, equivalently, the differences of absolute concentrati
decay asuNA(t)2NB(t)u;(ln t)221n, i.e., more slowly than
the decay of both concentrations ofA and B, which itself
behaves as (lnt)22. The system eventually reaches a brok
symmetry state where eitherA or B predominates after a time
tbr which scales as

tbr;ec(t8)upA(t8)2pB(t8)u21/n
, ~61!

where t8 is a ~shorter! reference time scale andc(t8) a
(t8-dependent! constant. Note that the uniform approxim
tion would predictn52/3 significantly smaller than the exac

FIG. 6. Dynamical phase diagram of the reaction~59! studied in
the text.
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result. Finally, the asymptotic final decay of the minor
phase is fast, exponential inG ~asm50 at eitherA ot B fixed
points!.

Restraining from giving further examples among the la
number of possible processes with similarly interesting
havior to which our general results readily apply, we no
turn instead to cases where open questions remain.

B. Reaction with a marginal fixed point

Let us now consider the reaction

A1A˜0, B1B˜B, A1B˜0. ~62!

The fixed points are the empty stateE(pA* 50,pB* 50,p0*
51) which is unstable with eigenvaluesm2,351, theB phase
(pA* 50,pB* 51,p0* 50) which is fully attractive with eigen-
values m2,350, and the fixed pointU(pA* 5 1

2 ,pB* 50,p0*
5 1

2 ) which is attractive withm350 along the axispB50
and marginal withm251/2 for any perturbationdpB.0. Go-
ing beyond the linear approximation, we find in the unifor
approximation thatG]GpB

G.2(pB
G)2, i.e., a small initial pro-

portion pB
G0 grows very slowly as

pB
G.

pB
G0

122pB
G0lnS G

G0
D ~63!

and thus the time scaleteq where the proportion ofB be-

comes finite grows likeG5T ln teq.e1/(2pB
0) for small pB

G0 .
In the real dynamics, the exponentF(m51/2) being 0, we
also expect a kind of marginal behavior near the fixed po
U. A full study of this behavior is an interesting questio
which goes beyond the present paper.

C. Cyclic reactions and complex eigenvalues

Let us study the reaction

A1A˜A, B1B˜B, C1C˜C, ~64!

A1B˜B, B1C˜C, C1A˜A. ~65!

The solutions of Eq.~21! are the three pure phasespA
51,pB51,pC51 and the mixed statepA5pB5pC5 1

3 . The
pure phasepA51 is stable (m50) in the directiondpC
52dpA.0, and unstable (m51) in the direction dpB
52dpA.0. The mixed fixed pointpA5pB5pC5 1

3 has
complex eigenvaluesm2,35(16 i /A3)/2, leading to purely
imaginary naive exponentsL2,356 i2/A3. As can be seen in
Fig. 5, the exact convergence exponentsF2,3, solutions of
Eq. ~52!, have a negative real part, and thus the fixed po
pA5pB5pC5 1

3 is also unstable. This shows that the
asymptotic behavior of the system is more complex th
being described by a fixed point of type~21!.

In fact, going back to Eq.~32! of the uniform approxima-
tion, and eliminatingpC512pA2pB , we obtain that the
flow equations for the two variables (pA ,pB) take the
‘‘divergence-free’’ form

G]GpA52]pB
f ~pA ,pB!, ~66!
e
-

t

t

n

G]GpB522]pA
f ~pA ,pB! ~67!

with f (pA ,pB)5pApB(12pA2pB). As a consequence, a
starting points where the three concentrations (pA ,pB ,pC)
are nonzero belong to closed flow linespk

uniform(G) of con-
stant value off (pA ,pB). Thus in the uniform approximation
the asymptotic behavior is always cyclic.

This, however, does not carry to the real dynamics,
yond the uniform approximation, since one can check t
these cyclespk

uniform(G)e2h12h2 arenot solutions of the RG
equation ~15!. Thus the question of determining th
asymptotic behavior of this problem is still open. A mo
complex cyclic solution, or a new nontrivial fixed point, a
among the possibilities.

We close this section by noting that one can also exp
from @13,12,14# that reactions with a large enough number
species have chaotic solutions at the level of the unifo
approximation. It would be interesting to investigate wheth
such chaotic solutions could also exist in the RG and in
exact dynamics of these disordered reaction diffusion pr
lems.

D. Reaction with an infinite number of states

We now consider the much studiedA1B˜ inert reac-
tion, which, in the absence of disorder, is known to lead
segregation@30# of the two species,

A1A˜A1A, B1B˜B1B, A1B˜0. ~68!

We introduce the notationsA050, Am5mA, and A2m
5mB (m>1). The possible contents for a valley are no
the Am with mPZ and thus their number is infinite. Th
reaction rules become with these notations

Ak1Ap˜Ak1p . ~69!

So for the RG procedure, it is convenient to associate
each valley an auxiliary variablem representing the content
of the valley, and to write the RG equation for the probab
ity distribution PG(z1 ,z2 ;m) where the RG rule for the aux
iliary variable m upon fusion of valleys simply readsm
5m11m2. We can use the result of the Appendix of@64#
~for the same RG rule of an auxiliary variable! and obtain the
scaling

^m2&;G2. ~70!

Thus we find that charges of orderG5T ln t of both signs
~i.e., groups of size of orderG5T ln t of particles of the same
specie! will accumulate near the bottom@in a packet of typi-
cal sizeO(1)] of each renormalized valley. These packe
will be separated by a large distance of order (T ln t)2. The
total number of particles will still decay, as 1/(T ln t). This
asymptotic state thus still presents strong features rem
cent of the segregation observed in the pure case@30#. By
contrast with the pure model, here several packets ofA can
also be found in successive neighboring valleys.

V. PERSISTENCE PROPERTIES

We now study persistence properties in the reaction
fusion models defined in Sec. I B. As explained in the Int
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duction, one is interested in computing probabilities th
some type of event has not occured between time 0 ant.
The decay with timet of these probabilities usually involve
new nontrivial exponents which characterize the nonequi
rium dynamics. Since they integrate over time the behav
of the system, they are usually hard to obtain analytica
even in the pure systems. For reaction diffusion models
random environment the following types of persistence pr
abilities can be defined, and will be studied in the followi
corresponding sections.

~i! The simplest persistence observable is the probab
P(t) over runs and environments that a given pointx50 has
not been crossed by any particle between time 0 andt in a
given run. The decay ofP(t),

P~ t !; l̄ ~ t !2u, ~71!

where l̄ (t) is a characteristic length of the diffusion proces
here given from Eq.~10! as l̄ (t)5 1

2 (T ln t)2, defines the per-
sistence exponentu. This is the definition used in this pape
even when referring to the pure case, wherel̄ (t);At,
whereas another frequent definition is in terms of the po
of t. Since here the diffusion is logarithmic, we choose e
erywhere in this paper the more general definition~71! both
for pure and disordered problems.

~ii ! In the presence of quenched disorder one can
study the probabilityP th(t) over environments that a give
point x50 has not been crossed by any of the therma
averaged trajectorieŝx(t)& of the particles. Similarly the
decay ofP th(t); l̄ (t)2 ū defines the exponentū. One expects
in general thatū<u and here we find that these two exp
nents are quite different.

~iii ! More generally, one can define the probability tha
given pattern present at time 0 has survived up to timet. We
study the example of the survival of domains~i.e., intervals
between particles!, which in the pure case was shown to le
to the definition of two new exponents@46# calledd andc:
d characterizes the probability that a domain has survived
to time t without merging with other domains, andc char-
acterizes the probability that a domain has survived up
time t with mergings with other domains.

~iv! Finally we study the exponentsdA andcA character-
izing the probability that a particleA has survived up to time
t, without any coalescence and with coalescences, res
tively.

A. Persistence in a single run

1. No crossing by any particles: Exponentu

We start by computing the probabilityP(t) thatx50 has
not been crossed byanyparticle up tot. We consider a rathe
general reaction diffusion process with a vacuum state 0k
50) and occupied states~with particles in them!, k>1. To
solve this problem we can consider separately the two
spacesx.0 and x,0 and study the problem of a sem
infinite system (x.0) with an absorbing boundary atx50
~absorbing for the statesk>1).

For diffusion in a Sinai landscape in the presence of
absorbing boundary atx50, one defines a new RSRG wit
slightly new rules: the boundary RSRG, explained in de
t
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in Ref. @60#. The first bond is by definition always ascendin
with an infinite barrier~and thus can never be decimated! and
represents an ‘‘absorbing zone’’~see Fig. 7!. If the smallest
barrier in the system atG is the third bond from the boundar
or further, the rules are identical to bulk RSRG. If the sma
est barrier is the second bond, i.e., the first descending b
the procedure consists in eliminating the first valley~i.e., the
second and third bond! which is merged with the absorbin
zone.

Since the reaction rules of the species upon merging
leys are unaffected by the boundary, at a givenG all renor-
malized valleys in the bulk are distributed independen
with Pk

G(h1 ,h2), which satisfies Eq.~15!. We now explicitly
check that the first renormalized valley also has the sa
distribution. Indeed the probabilityRk(h,h8) that the first
renormalized valley has (h,h8,k) satisfies the RG equation

@G]G2~11h!]h2~11h8!]h822#Rk
G~h,h8! ~72!

5Pk
G~h,h8!E dh2(

k8
Rk8

G
~0,h2!

1Wk1 ,k2

k Rk1

G ~•,0!* hPk2

G ~•,h8! ~73!

1Wk1 ,k2

k Rk1

G ~h,• !* h8Pk2

G ~0,• !

2Rk
G~h,h8!E dh2(

k8
Pk8

G
~0,h2!, ~74!

where the first term corresponds to the decimation of
second bond~which results in the increase of the absorbi

FIG. 7. Illustration of the RG in the presence of an absorb
boundary.~a! The boundary at sitex50 can be represented b
settingU052`. ~b! Renormalized landscape, with the absorbi
zone~see text!.
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zone! and the old second valley becomes the new first ren
malized valley. The third and fourth terms correspond to
decimation of the left bond of the second valley~the loss
term must be explicitly written on the left-hand side to ke
the distributionR correctly normalized to unity!. One can
now check thatRk

G(h,h8)5Pk
G(h,h8) is a consistent solu

tion.
To compute the persistence exponent, we now de

Vk(h,h8) as the probability over all environments that t
boundary atx50 has never been crossed by a walker
tween time 0 andG and the first renormalized valley ha
(h,h8,k) at G. It satisfies the RG equation

@G]G2~11h!]h2~11h8!]h822#Vk
G~h,h8! ~75!

5Pk
G~h,h8!E dh2V0

G~0,h2!

1Wk1 ,k2

k Vk1

G ~•,0!* hPk2

G ~•,h8! ~76!

1Wk1 ,k2

k Vk1

G ~h,• !* h8Pk2

G ~0,• !

2Vk
G~h,h8!E dh2(

k8
Pk8

G
~0,h2! ~77!

similar to Eq.~72! except for the first term, which carries th
restriction that the second bond can be decimatedonly if the
first renormalized valley is empty~since, if it contains a par-
ticle, this particle gets absorbed by the wall, i.e., crosses
origin!. A consistent solution is simply

Vk
G~h,h8!5vGPk

G~h,h8! ~78!

with

G]GvG52vGE
h2

S (
k8

Pk8
G

~0,h2!2Pk50
G ~0,h2!D . ~79!

We now use the fact that the system reaches for largG
an asymptotic state corresponding to an attractive fixed p
~20!, and this leads to the asymptotic decay

vG;G2(12p0* ). ~80!

Since the probabilityP(t) that the pointx50 has not been
crossed by any particle up to timet on the infinite line is the
square of the corresponding probability for the semi-infin
problem, we obtain

P~ t !;vG
2; l̄ ~ t !2u ~81!

with l̄ (t)5 1
2 (T ln t)2 and the result for the persistence exp

nent:

u512p0* . ~82!

As an example, we show the result for the process~4!
wherep0* 5r /r 11:

u r5
1

11r
. ~83!
r-
e

e

-

e

nt

-

For r 50 where the particlesA always merge and occupy a
valleys, we recover the half-space exponent1

2 u(r 50)5 1
2

corresponding to the decay exponent of the probability of
return to the origin for a single Sinai walker obtained
@59,60#.

2. Number of particles absorbed by a wall:
Generalized persistence

A generalization of the persistence exponentu can be
defined for reaction diffusion models on the semi-infin
line x.0 in the presence of an absorbing boundary atx50.
There one can compute the probabilityQG(n) that exactlyn
particules have been absorbed by the wall up to timet. Gen-
eralizing the approach of Eq.~75!, we obtain thatQG(n)
satisfies at largeG

G]GQG~n!5~12p0* !@QG~n21!2QG~n!#, n>1,
~84!

G]GQG~0!52~12p0* !QG~0!. ~85!

The RG equation for the generating functionQG(z)
5(nznQG(n),

G]GQG~z!52~12p0!~12z!Q~z!, ~86!

thus leads to the decayQG(z);G2(12p0)(12z). Introducing
the rescaled number of absorbed particules

g5
n

ln G
~87!

and using as in@59,60# the saddle point method, we find afte
a Legendre transform that the probability distributio
prob(g) behaves as

prob~g!;G22v(g) ~88!

with the generalized persistence exponent

2v~g!5~12p0* !2g1g lnS g

12p0*
D . ~89!

For g50, one recovers the persistence exponent of
half-spacev(0)5u/2, whereu is given by Eq.~82!. v(g)
has a zero minimum atga5(12p0) which is thus the value
that g takes with probability 1 asG˜`,

n

ln~T ln t !
5~12p0* ! with probability 1 as t˜`.

~90!

B. Persistence of thermally averaged trajectories

As was discussed in detail in Ref.@60#, thermally aver-
aged trajectories of a single Sinai walker follow the effecti
dynamics which we now use to study their persistence pr
erties. Figure 8 illustrates the difference in the persiste
properties between the single run dynamics studied in
preceding section and the effective dynamics of therma
averaged trajectories. Let us consider the case of a va
with a right bond of barrierG such that the pointx50 lies to
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the left of a valley bottom and is separated from it by
barrier less thanG. In this case,x50 will be crossed~several
times! in a typical single run, while the thermal averag
^x(t)& will remain at the bottom of the valley until it jump
to the right over the barrier without crossingx50. Thus, as
was found in@60# for the return to the origin of a single
walker, the exponentsu and ū should generically be differ-
ent.

We now compute the probabilityP th(t) that the pointx
50 has not been crossed by any particle up to timet within
the effective dynamics. Let us define for each valley
auxiliary variablesm1 ,m2 equal to the total number of site
in the descending (m1) and ascending (m2) bonds, respec-
tively, which have not been crossed by any particle betw
0 andt. We define the probabilitiesPk(h1 ,h2 ,m1 ,m2) that
a valley has a speciek, bondsh1,h2, and variablesm1 ,m2.
Consider the decimation represented in Fig. 2. Let us de
the two valleys corresponding to bonds (1,2) and (3,4) c
taining, respectively, the speciesk1 andk2. Upon decimation
of bond 2, the two valleys merge and the speciek1 jumps to
the bottom of the valley (3,4) and thus goes over the bo
(2) and (3) to react there with the speciek2. As a conse-
quence, the auxiliary variable of the new renormalized bo
F385F11F32G evolves with the rule

m385m11dk1,0m21dk1,0m3 . ~91!

This is a particular case of the auxiliary variables stud
in Appendix A with ak5bk5dk,0 anddk51.

The final result is that the fraction of sites that have ne
been crossed by any particle in the effective dynamics
cays asm/ l Ḡ;( l Ḡ)2 ū, where the persistence exponentū is
the solution of the following equation involving the conflu
ent hypergeometric functionsU(a,b,z):

ū U~2p0* ,2ū,1!5U~2p0* ,2ū11,1!. ~92!

For the process~4! one hasp0* 5r /(11r ), and the result-

ing exponentū(r ) is plotted in Fig. 9. Surprisingly we find
that it is numerically extremely close for allr ~to less than
about 1% in relative difference! of one-half the result@11#
for the pure system, which reads1

2 upure(r )52 1
8

FIG. 8. If the point atx50 ~indicated by a dotted line! happens
to lie in a renormalized valley as shown on the left figure, it will
crossed many times by a single particle, while it may not be cros
at all by the thermal average^x(t)& before it jumps over the barrie
on the right. This is not the case in the situation shown on the r
figure, where typically no crossing ofx50 occurs for a single par
ticle.
e

n

te
-

d

d

d

r
e-

12/p2$arccos@(r 21)/A2(r 11)#%2 and is also plotted in
Fig. 9. The expansion for smallr gives

ū~r !5122r 1o~r !, ~93!

1

2
upure~r !512

6

p
r 1o~r ! ~94!

and thus they are definitively different. In the caser 51
where particles always annihilate, we obtain

ū~r 51!50.380 678 . . . ~95!

which may be compared with1
2 upure(r 51)53/850.375.

The difference remains very small for allr, as shown in Fig.
10.

We have also generalized the calculation presented in
section to compute thenumber of visitsof thermally aver-
aged trajectories of particles at a given point. It leads agai

d

t

FIG. 9. Plot of ū(r ) as a function ofr ~solid line! and, for
comparison,12 upure(r ) ~dashed line!.

FIG. 10. Plot of du(r )5
1
2 upure(r )2 ū(r ): the difference re-

mains very small for all r. It vanishes at r 50 and r
50.280 701 . . . .
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a multifractal spectrum of exponents. The calculation and
results are presented in Appendix A.

C. Statistics of merging domains

Here we define domains as intervals between partic
For the reaction~4!, on which we now concentrate, when
domain dies~the two particulesA meet! the two contiguous
domains can either merge if the particles annihilate~with
probability r ) or remain separate if the particles coales
~with probability 12r ). To characterize the statistics of th
coarsening of domains in the pure case@i.e., Potts domains
with q511(1/r )#, Krapivsky and Ben-Naim have intro
duced@46# the following definition. They defineQm(t) as the
number of domains at timet which have for ancestorsm
>1 initial domains. This is illustrated in Fig. 11.

The total numberN(t) of domains remaining at timet
~equal to the total number ofA at timet) is simply given by
the sumN(t)5(m51

1` Qm(t) and decays as;pA* / l̄ (t), where

l̄ (t);(T ln t)2 is the characteristic length at timet, given in
Eq. ~10!. The fraction of initial domains which have a de
scendant that is still alive att is given by S(t)
5(mmQm(t)5^m&N(t). The decay of these quantities d
fines two new independent persistence exponentsd andc:

Q1~ t !; l̄ ~ t !2d, ~96!

S~ t !; l̄ ~ t !2c, ~97!

and with these exponents it is expected thatQm(t) takes the
scaling form

Qm~ t !5
1

l̄ ~ t !22c
QS m

l̄ ~ t !12cD . ~98!

The scaling function is expected to behave for smallz as
Q(z);zs, where the exponents is related to (d,c) by the
relation d522c1(12c)s. Note that the inequalities
Q1(t)<(mQm(t)<(mmQm(t) imply that c<1<d. Note
that here we have again defined the exponents with respe
the characteristic lengthl̄ (t) at timet. Thus in the pure case
our definition differs from the one of@46# by a factor of 2.

FIG. 11. Diffusion and merging of domains. To each doma
present at timet ~bottom of the figure! is associated the numberm
of ancestor domains in the initial state~defined at the top slicet
50). Note that some initial domains die without producing a
descendant domain at timet.
e

s.

e

t to

Below, we obtain the exponentsd(r ) and c(r ) exactly
for the process~4!.

1. Exponentd„r … for the process (4)

For a domain to survive up to timet while keeping its
variable m51, the two domain walls must avoid meetin
each other up to timet, but they can meet other exterio
domain walls, provided that upon meeting they coalesce
do not annihilate.

Since the two domains walls must not meet, given
properties of the effective dynamics in the RG, the decay
Q1(t) is governed by the events such that at someG0 the two
domains belong to two neighboring renormalized valleys.
all later times they will still belong to two neighboring reno
malized valleys and no decimation of the two renormaliz
bonds separating the two domains can occur. As a co
quence, to compute the exponentd, we can consider sepa
rately the two corresponding half-spaces.

For a given half-space, we introduce the probabil
RG(h,h8) that the first bond has never been decimatedand
the valley is(h,h8) and there is always one walker in th
first valley. The RG equation for this quantity reads

@G]G2~11h!]h2~11h8!]h822#RG~h,h8! ~99!

5RG~h,• !* h8@P0
G~0,• !1~12r !PA

G~0,• !# ~100!

1RG~•,0!* h@P0
G~•,h8!1~12r !PA

G~•,h8!#
~101!

2RG~h,h8!E
0

`

dh2(
k8

Pk8
G

~0,h2!, ~102!

where the2 term arises because theRG, unlike thePk
G , is

not normalized to 1, and one must count the loss associ
with the left bond of the second valley. Integrating ov
(h,h8) one finds thatRG5*dh dh8RG(h,h8) evolves with

G
dRG

dG
52E dh8RG~0,h8!2rpA

GE dh RG~h,0!

2rRGE
0

`

dh PA
G~0,h! ~103!

corresponding to the three forbidden cases: decimation of
first bond, decimation of the second or third bond when b
valleys are full, and annihilation occur.

The exponentd will be given by the decay of the half
space probabilityR(h,h8);G2d, since the probability asso
ciated with the two sides will decay as the square of
probility for one side, i.e., asG22d; l̄ G

2d . SettingR(h,h8)

5G2de2h2h8r(h,h8), and usingp0* 1(12r )pA* 51/(11r ),
one finds

05@~11h!]h1~11h8!]h81~d212h2h8!#r~h,h8!
~104!

1
1

11r S E
0

h
dh1r~h1,0!1E

0

h8
dh2r~h,h2! D .

~105!
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There is a solution of the formr(h,h8)5 r̃(h1h8),
wherer̃(h) satisfies

05@~21h!]h1~d212h!#r̃~h!1
1

11r E0

h
dh8r̃~h!.

~106!

After derivation with respect toh, one finds a standard hy
pergeometric differential equation which allows only for
solution not growing exponentially ath˜`, the confluent
hypergeometric functionU(r /r 11,21d,21h). The bound-
ary condition ath50 then determines the exponentd(r ) as
the solution of the implicit equation

2U8S r

r 11
,21d~r !,2D1@d~r !21#US r

r 11
,21d~r !,2D50.

~107!

Using the functional relation zU8(A,B,z)1(B21
2z)U(A,B,z)52U(A21,B21,z), the exponentd(r ) is fi-
nally the solution of the equation

US 2
1

11r
,11d~r !,2D50. ~108!

The solution of this equation is plotted in Fig. 12.
In the caser 50, we find d(r 50)51 as expected. In-

deed, in that case where particles always coalesce, dom
cannot merge, and thusm51 is the only possible value

Qm(t)5 1
l̄ dm,1 and thusd515c as in the pure case. Fo

the caser 51, where particles always annihilate, we find

d~r 51!52.530 83 . . . ~109!

which is remarkably close to the numerical result obtained
@46# for the Ising pure case:dpure(r 51)52.54(4). This puz-
zling feature also holds for other values ofr, as shown in
Fig. 12, with less than about 1% in relative difference.

FIG. 12. Plot of the exponentd(r ) for the process~4! in the
Sinai landscape, determined by Eq.~108! ~solid line!, and compari-
son with the numerical results of Krapivsky and Ben Naim~Ref.
@46#! for the pure case~circles!.
ins

n

2. Exponentc„r … for the process (4)

To computec we need to obtain the scaling behavior
the average number of ancestors of the domain^m&
;G2(12c). However, this isa priori difficult, as the variable
m is associated to a domain which can extend over m
renormalized bonds and is thus ‘‘nonlocal.’’ However, w
can circumvent this difficulty by decomposingm upon the
several renormalized bonds which make up a domain, in
der to have alocal rule under RG for an auxiliary variableb
associated to bonds. Thus we write each variablem for a
domain made out ofq bonds, as the summ5b11b21•••

1bq , of new auxiliary variables, each associated to a bo
Sinceq does not grow withG, the scaling of̂ m& and ^b&
with G is identical. We define RG rules for the localb vari-
ables as follows. We consider two neighboring valleys as
Fig. 2 with bonds~1,2! containing speciek1 and ~3,4! con-
taining speciek2, respectively. One must think of the var
able b as counting the number of ancestors associated
renormalized bond and thus upon decimation of bond~2! the
variablesb, b8 associated to the new bonds of barriersF1
1F32G andF4 become

b5b11b21b3 and b85b4 if k150” , ~110!

b5b1 and b85b21b31b4

if k15A and k250” , ~111!

b5b1 and b85b4 if k15A and k25A.
~112!

The first case where the decimated valley is empty is ob
ous. In the second case, where a particleA jumps from valley
~1,2! to the empty valley~3,4!, the ancestors of the domain t
the right ofA previously associated to the bonds~2!, ~3!, and
~4! must now all be associated to the bond~4!. In the third
case, where the twoA meet, the ancestors of~2,3! disappear
from the problem in all cases~i.e., annihilation or coales-
cence of theA particles!.

Introducing the rescaled variablesb5b/GF, where F
52(12c), the fixed point RG equation for the valley dis
tribution Pk(h,h8,b,b8) reads

05@~11h!]h1~11h8!]h812

1f~b]b1b8]b812!#Pk~h,h8,b,b8! ~113!

1Wk1 ,k2

k E
b i

Pk1
~•,0,b1 ,b2!* hPk2

~•,h8,b3 ,b4!

~114!

3d$b2@b11~b21b3!dk1 ,0” #%

3d$b82@b41~b21b3!dk1 ,Adk2 ,0” #% ~115!

1Wk1 ,k2

k E
b i

Pk1
~h,•,b1 ,b2!* h8Pk2

~0,•,b3 ,b4!

~116!

3d$b2@b11~b21b3!dk1 ,Bdk2 ,A#%

3d$b82@b41~b21b3!dk2 ,0” #%. ~117!
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We introduce the two first moments (k50 andk5A)

gk~h,h8!5
1

P* ~h,h8!
E dbdb8bPk~h,h8,b,b8!,

~118!

whereP* (h,h8)5e2h2h8.
Using the symmetryPk(h,h8,b,b8)5Pk(h8,h,b8,b),

we find that they satisfy the closed system

05@~11h!]h1~11h8!]h82h2h82F#g0~h,h8! ~119!

1p0* E
0

h

@g0~•,h8!1g0~•,0!1g0~0,• !1gA~•,0!#

1p0* E
0

h8
@g0~h,• !1gA~h,• !#, ~120!

05@~11h!]h1~11h8!]h82h2h82F#gA~h,h8!
~121!

1pA* E
0

h

@gA~•,0!1g0~•,0!1g0~0,• !#1p0* E
0

h
gA~•,h8!

~122!

1pA* E
0

h8
@gA~h,• !1g0~h,• !1g0~•,h!#

1p0* E
0

h8
gA~0,• !. ~123!

The exponentF is determined by the condition that the s
lutions g0(h,h8) and gA(h,h8) of this system should be
well behaved at infinity~i.e., should not be exponentiall
growing!.

We found that setting

gA~h,h8!5SA~z5h1h8!, ~124!

g0~h,h8!1g0~h8,h!5S0~z5h1h8!, ~125!

allows us to obtain the following closed system for the tw
functionsS0(z) andSA(z):

05~21z!S08~z!2~z1F!S0~z!12p0* E
0

z

@S0~• !1SA~z!#,

~126!

05~21z!SA8 ~z!2~z1F!SA~z!1E
0

z

@SA~• !1pA* S0~z!#,

~127!

i.e., independent of the antisymmetric part ofg0(h,h8)
which we will not need. To decouple this system, we int
duce two linear combinationsS6(z)5cASA(z)1c0S0(z)
that satisfy closed equations,

05~21z!S68 ~z!2~z1F!S6~z!1n6~r !E
0

z

S6~• !,

~128!
-

where the eigenvalues, usingp0* 5r /(11r )512pA* , are

n6~r !5
1

2
1

r

11r
6

A116r 1r 2

2~r 11!
. ~129!

The only solutions of Eq.~128! that are not exponentially
growing at infinity are again given in terms of the degener
hypergeometric function,

S6~z!}U~12n6,32F,21z!. ~130!

The boundary conditions 2S68 (0)5FS6(0) finally give

U„2n6~r !,2c6~r !,2…50. ~131!

Since c1(r ),c2(r ), the growth of^m&}G2(12c) will be
governed byc1(r ), and thus the final result is that the e
ponentc(r ) is determined by the equation

US 2
1

2
2

r

11r
2

A116r 1r 2

2~r 11!
,2c~r !,2D 50. ~132!

In particular, we have the following expansion aroundr
50:

c~r !512
5

2
r 1o~r !. ~133!

For the caser 51 where particles always annihilate, w
find

c~r 51!50.254 821 . . . ~134!

which again is remarkably close to the numerical result
tained in @46# for the Ising pure case:cpure(r 51)
50.252(2), a property which holds again for allr, and again
to within less than about 1% in relative difference, as illu
trated in Fig. 13.

In the end we note that one can generalize the bound

FIG. 13. Plot of the exponentc(r ) for the process~4! in the
Sinai landscape, determined by Eq.~132! ~solid line!, and compari-
son with the numerical results of Krapivsky and Ben Naim~Ref.
@46#! for the pure case~circles!.
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cpure<upure ~135!

discussed in@46#, to the disordered case, as

c~r !<ū~r !, ~136!

i.e., that the exponentc(r ) is always bounded by the persi
tence exponentū(r ) of thermal averaged trajectories foun
in Eq. ~92!. This comes from the observation that a point th
has never been crossed by any particle up to timet for the
effective dynamics has to belong to a domain that ha
descendant still living at timet. Here the reverse inequality i
clearly not true~for p0* Þ0) since a surviving domain ma
not contain any persistent site, as it can shift from its init
position, as shown in Fig. 14. In particular, we have fou
@Eq. ~93!#:

ū~r !5122r 1o~r !. ~137!

Thusc(r ) and ū(r ) differ already at first order inr. This is
different from the case of the random field Ising model, stu
ied in @59,61#, where it is found thatc5 ū5(32A5)/4, as
the situation depicted in Fig. 14 does not occur.

D. Statistics of coalescing particles

We now come to the study of persistence properties a
ciated to a particle. Following the general framework p
sented in the preceding section for the study of dom
merging statistics, we now introduce the numberDn(t) of
particlesA at timet which haven particlesA for ancestors in
the initial condition. This is illustrated in Fig. 15. This wi
lead us to introduce two exponents,dA andcA . dA has been
defined and computed numerically in the pure case in R
@77#. We will computedA and cA here in the disordered
model.

FIG. 14. Configuration where a surviving domain contains

persistent site, which accounts for the strict inequalityc(r ), ū(r )
found here forr .0.

FIG. 15. Number of ancestors of surviving particle.
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The total numberN(t) of particles at timet is simply
given by the sumN(t)5(nDn(t);„ l̄ (t)…21. The fraction of
initial particles which have a descendant still alive att is
given bySA(t)5(nnDn(t)5^n&N(t). Again, the decays of
D1(t), i.e., of the number of particles which have encou
tered no other particles, and ofSA(t) define two new inde-
pendent exponents,

D1~ t !; l̄ ~ t !2dA, ~138!

SA~ t !; l̄ ~ t !2cA. ~139!

Together with these exponents, it is expected thatDn(t)
takes the scaling form

Dn~ t !5
1

l̄ ~ t !22cA
DS n

l̄ ~ t !12cA
D , ~140!

where the scaling function behaves for smallz as D(z)
;zsA for small z where the exponentsA is related to
(dA ,cA) by the relationdA522cA1(12cA)sA .

We will compute these exponents via the RSRG by t
methods. The first one is direct, while the second one, p
sented at the end, will rely on results previously establish
in Sec. III.

In the first method, we introduce an auxiliary variablen
for each valley containing a particleA that counts the num-
ber of ancestors of this particle. We then introduce the pr
ability PA

G(h,h8,n) that a valley at scaleG has (h,h8) and
contains a particleA havingn ancestors in the initial condi
tion. It satisfies the RG equation

@G]G2~11h!]h2~11h8!]h822#PA
G~h,h8,n! ~141!

5PA
G~h,•,n!* h8P0

G~0,• !1PA
G~•,0,n!* hP0

G~•,h8!
~142!

1P0
G~h,• !* h8PA

G~0,•,n!1P0
G~•,0!* hPA

G~•,h8,n!
~143!

1~12r !@PA
G~h,•,• !* h8,nPA

G~0,•,• !

1PA
G~•,0,• !* h,nPA

G~•,h8,• !#, ~144!

whereP0
G(h,h8) is the probability that a valley at scaleG

has (h,h8) and contains no particle, i.e., it satisfies Eq.~15!.
At this stage, the variablen is an integern51,2,3, . . . , and
the convolution onn is a discrete convolution.

At large G, we know the fixed point P0* (h,h8)

5p0* e2h2h8 and (nPA
G(h,h8,n)5pA* e2h2h8, where p0*

5r /r 11512pA* . Thus setting PA
G(h,h8,n)

5pA* e2h2h8DG(h1h8,n), we find that the function
DG(z,n) satisfies

@G]G2~21z!]z1z#DG~z,n!

52p0* E
0

z

dz8DG~z8,n!1~12r !pA* DG~•,• !* z,nDG~•,• !

~145!
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and we now will compute successivelydA(r ), cA(r ) for all
r and the scaling function forr 50.

1. ExponentdA„r … for the process (4)

To compute the exponentdA giving the decay of the num
ber of particlesA that have only one ancestor in the initi
condition, we need to solve the previous equation for
particular valuen51. DG(z,n51) decouples from the othe
values ofn, and satisfies the linear equation

@G]G2~21z!]z1z#DG~z,1!52p0* E
0

z

dz8DG~z8,1!.

~146!

Since

Dn51~ t !5N~ t !*h,h8PA
G~h,h8,1!;~1/G2!*dzze2zDG~z,1!,

we setDG(z,1)5G222dAD(z). The functionD(z) is then the
solution of the differential equation

~21z!D9~z!1~2dA212z!D8~z!2~122p0* !D~z!50
~147!

together with the boundary condition atz50,

2D8~0!1~2dA22!D~0!50. ~148!

We thus findD(z)}U(122p0* ,112dA,21z), and the expo-
nentd is determined by the implicit equation

2U8~122p0* ,112dA,2!1~2dA22!U~122p0* ,112dA,2!

50. ~149!

Using the functional relation zU8(A,B,z)1(B21
2z)U(A,B,z)52U(A21,B21,z), and p0* 5r /r 11, the
exponentdA(r ) is finally the solution of the equation

US 2
2r

r 11
,2dA~r !,2D50. ~150!

For the particular caser 51 where particles always annih
late upon meeting, we havedA(r 51)51 as it should since
in this case the particles can have only one ancestorDn(t)
5dn,1NA(t). In the limit r˜0, where particles always coa
lesce upon meeting, we havedA(r 50)˜1` : indeed in this
case at largeG, all valleys contain a particleA (pA* 51), and
the probability to haven51 decays exponentially withG,
since it requires that four consecutive bonds~the two bonds
of the valley and the two neighbors! are not decimated. On
can compare with the pure case~dA52u1 in notations of
@77#! wheredA(1)51 but dA(r 50)53.

2. ExponentcA„r … for the process (4)

To compute the exponentcA , we introduce the rescale
variable n5n/G2(12cA). The fixed point solutionD(z,n)
5PA* (z,n)/pA* e2z of the rescaled variables has to satisfy

@~21z!]z2z12~12cA!~n]n11!#D~z,n! ~151!
e

12p0* E
0

z

dz8D~z8,n!1~12r !pA* D~•,• !* z,nD~•,• !50.

~152!

In particular, usingp0* 5r /(r 11)5rpA* , we find that its first
momentC(z)5*0

`dn nD(z,n) satisfies the differential equa
tion

~21z!C9~z!1~2cA212z!C8~z!1~122p0* !C~z!50
~153!

with the boundary condition atz50,

2C8~0!12~cA21!C8~0!50. ~154!

So finally C(z)}U(2112p0* ,112cA,21z), where the ex-
ponentcA is the solution of the implicit equation

2U8~2112p0* ,112cA,2!

12~cA21!U~2112p0* ,112cA,2!50.

~155!

Using again the functional relationzU8(A,B,z)1(B21
2z)U(A,B,z)52U(A21,B21,z), and p0* 5r /r 11, the
exponentcA(r ) is finally the smaller solution of the equatio

US 2
2

11r
,2cA~r !,2D50. ~156!

For the particular caser 51 where particles always ann
hilate upon meeting, we havecA(r 51)515d(r 51) as it
should, since in this case the particles can have only
ancestor. In the caser 50, where particles always coalesc
upon meeting, we havecA(r 50)50: indeed the probability
for an initial particle to have a descendant living atG is 1,
and thusSA(t) is constant and not decaying.

3. Scaling function

The distribution D(n) of the rescaled variablen
5n/G (222cA) can in principle be obtained in terms of th
solutionD(z,n) of Eq. ~151! as

D~n!5E
0

`

dh1E
0

`

dh2

PA* ~h1 ,h2 ,n!

pA*
5E

0

`

dz ze2zD~z,n!.

~157!

In Laplace with respect ton, we have that D̂ r(z,q)
5*0

`dn e2qnD r(z,n) satisfies

$~21z!]z2z22@12cA~r !#q]q%D̂ r~z,q! ~158!

1
2r

11r E0

z

dz8D̂~z8,q!1
12r

11r
D̂ r~•,q!* zD̂ r~•,q!50.

~159!

In the caser 50, where particles always coalesce up
meeting, the numbern of ancestors should have the sam
statistical properties as the length of a valley, and thus us
the fixed point solution we should have
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TABLE I. Summary of the results obtained in the text for persistence exponents associated to the
of the probability of each indicated event, in the case of the reaction diffusion pro
A1A˜0” (probr )A1A˜A(prob 12r ).

Event Exponent Equation

No crossing of O by any particle u(r ) u51/(11r )
n5g ln G particles absorbed at O v(g) 2v5(11r )212g1g ln@(11r)g#

No crossing of O by thermal. aver. traj. ū(r ) ūUS2 r

11r
,2ū,1D5US 2

r

11r
,2ū11,1D

Domain survival without merging d(r ) U„21/(11r ),11d,2…50

Domain survival with merging c(r ) US2 1
22

r

11r
2

A116r 1r 2

2~r 11!
,2c,2D 50

Particle survival without coalescence dA(r ) U„22r /(11r ),2dA,2…50
Particle survival with coalescence cA(r ) U„22/(11r ),2cA,2…50
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0

`

dn e2qn
PA* ~z,n!

pa*
5

q

sinh2Aq
e2zAq cothAq. ~160!

Indeed we find

D̂ r 50~z,q!5
q

sinh2Aq
ez(12AqcothAq) ~161!

is the solution of Eq.~158! for (r 50,cA50), and thus in this
case the scaling functionD(n) reads

Dr 50~n!5LTq˜n
21 S 1

cosh2Aq
D

5 (
j 52`

1`

@2np2~ j 11/2!221#e2np2(1/21 j )2

~162!

5
2

Apn3/2 (
k52`

1`

~21!k11k2e2k2/n. ~163!

4. Second method to computedA„r … and cA„r …

To computeD1(t), i.e., the probability that a given par
ticle A has met no other particles up to timet, we can con-
sider this particleA as a tagged particle, sayX, and consider
it as a new specie in very small concentration. It satifies
following reaction rule:

A1X˜0, prob51 ~164!

and of courseX10˜X and the same reactions for theA as
before. We need only to work to linear order inpX and we
are back exactly in the case studied in Sec. III of the dyna
ics near the asymptotic state of a new reaction diffus
~whose fixed point haspX* 50). The corresponding eigen
value of the matrixM introduced in Eq.~22! is m5p0*
5r /(11r ). Here 0<m<1/2, which corresponds to an a
tractive fixed point atpX50 ~since theX disappears! and
with pX;G2F, where F is solution of Eq. ~52! for m
5r /(11r ). Since D1(t);pX /G2;G22dA, we recover Eq.
~150!.
e

-
n

To compute the exponentcA(r ) we need to conside
similarly the reaction for the tagged particleX:

A1X˜X, prob512r , ~165!

A1X˜0, prob5r , ~166!

and of courseX10˜X and the same reactions for theA. In
this case m5p0* 1pA* (12r )51/(11r ) and 1/2,m,1,
which corresponds to anunstablefixed point atpX50. One
finds pX;G2F, whereF is the solutionF2 of Eq. ~52! for
m51/(11r ). SinceSA(t);pX /G2;G22cA we recover Eq.
~156! which determinescA(r ) ~see Table I!.

VI. DISORDER IN THE REACTION PROBABILITIES

It is interesting to study the stability of our results to a
additional quenched disorder in the reaction probabilit
given by the matrixW ~i.e., spatial inhomogeneities!. We
continue to consider only the rule that species react imm
ately when they encounter, but the analysis in fact also c
ers — in an effective way — the case where reaction ra
are finite and with quenched disorder. We sketch in this s
tion a possible way of applying the present RSRG proced
to this case.

Let us consider a model where the reaction probabilit
are themselves functions of the positionWk1 ,k2

k (x). A simple

example is to allow the parameterr to depend onx asr (x) in
the process~4!. Let us examine what happens at a decimat
time scaleG5T ln t. The particle in statek1 in the decimated
valley jumps over the barrier to a valley containingk2. Since
k2 is typically at equilibrium at the bottom of its valley, th
reaction is most likely to take place at the bottom of t
valley within aO(1) distance of it~since this is where all the
weight of the particulek2 is concentrated!. Thus as time
increases, the total number of sites in the system where
actions can typically occurs decays as 1/G2. In each renor-
malized valley atG there is typically a ‘‘finite’’ number~i.e.,
not growing with G) of sites x where reactions occur an
thus a ‘‘finite’’ number of possible valuesW(x) ~a notation
for the set ofWk1 ,k2

k ). For each valley these form a given s

fixed in time. There are thusa priori two competing effects:
the several values taken byW in a valley result in an ‘‘aver-
aging’’ effect for the effectiveW of this valley. On the other
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hand, the fact that this set is finite and fixed in time impl
nontrivial correlations between two reactions occurring
different times in the same valley.

Here we will restrict ourselves to considering a toy mod
where we assign a single transition matrixW to each renor-
malized valley with probabilityP(W). It would be accurate
in the case where in the initial distribution theW’s are cor-
related over distances much larger than the typical ther
width of a packet;O(1), but still small compared toG2.
This problem can thus be treated by introducing the proba
ity Pk(h1 ,h2 ,W) that a valley has rescaled barriersh1 , h2
and an associated rateW. When two valley merge upon
decimation, the new one simply keeps theW of the lowest
one. One notes that the statistical independence is again
served by RG. The RG equation is simply

G]GPk
G~h1 ,h2 ,W!

5@~11h1!]h1
1~11h2!]h2

12#Pk
G~h1 ,h2 ,W!

1Wk1 ,k2

k @Pk1

G ~h1 ,•,W!* h2
Pk2

G ~0,• !

1Pk1

G ~•,0!* h1
Pk2

G ~•,h2 ,W!#, ~167!

where *WPk(h1 ,h2 ,W)5Pk(h1 ,h2) and summation ove
repeated indices is implied. We also note that the distribu
of W, PG(W)5(k*h1 ,h2

Pk(h1 ,h2 ,W), is preserved by the

RG rule, thusPG(W)5P(W). Thus we have a ‘‘marginal’’
problem, since in this toy modelP(W) does not flow by RG
@76#.

One can now look for fixed points of this RG equatio
under the form

Pk~h1 ,h2 ,W!5e2h12h2Pk~W!, ~168!

where thePk(W) must satisfy

Pk~W!5Wk1 ,k2

k Pk2
~W!E dW8Pk1

~W8!. ~169!

In the case of the model~4! with a distributionP(r ) of r,
one can show that a solution is

Pk~r !5P~r !pk* ~r !, ~170!

wherep0* (r )5r /(11r ) and pA* (r )51/(11r ) are the equi-
librium occupation probabilities for the problem with a un
form r solution of the equation pk* (W)
5Wk1 ,k2

k pk2
* (W)pk1

* (W). Such a simple solution holds in tha

case because of the form of the matrixM ~22! which is
simply a projector onto the vectorpk* . In general, this does
not hold and one has to solve the above equation. It is t
possible in principle to perform, for an arbitraryP(W), the
same study as the one done here, such as stability eige
ues around the fixed point, etc., which is left for the futur

To summarize, the above result indicates that within
toy model and the effective dynamics, quenched disorde
the transition matrixW(x) will lead to a modification of the
large time properties. These properties can be computed
ing the RG by assigning an effective reaction probabi
matrix of each valley. They depend in a continuous way
the asymptotic distributionP(W). There is thus an infinite
s
t
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dimensional manifold of fixed points in the RG sense, a
the problem ismarginal. Like all marginal problems, it is
very sensitive to corrections which may make disorder m
ginally irrelevant or marginally relevant~or remain strictly
marginal!. The averaging effect may in the end make t
disorder marginally irrelevant, but to decide, within the re
dynamics@76# and within a model with shorter disorder co
relation length, whether disorder is actually marginally irre
evant, and how it flows, requires a more detailed study wh
goes beyond this work.

VII. CONCLUSION

In this paper we have studied the problem of various s
cies of particles diffusing in the presence of quenched r
dom local bias~Sinai landscape! and reacting upon meeting
We have shown that the real space renormalization gr
method~RSRG!, which has proved to be a powerful tool t
study single particle diffusion in the Sinai landscape@59#,
can be extended in a simple and natural way to study a la
class of reaction diffusion models. Since here also the ph
ics is controlled by infinitely broad disorder fixed points, th
method, as in the single particle problem, is expected to y
theexactlarge time behavior. Focusing on renormalized v
leys as well as on the particles~and species! contained in
these valleys, and following the evolution of their distrib
tion by decimation upon an increase of the time scale,
lowed us to obtain many new exact results for this proble

We have obtained a detailed description of the asympt
states, such as the large time decay of the density of e
specie,nk(t), and the spatial distribution of particles. It con
firms that in thed51 Sinai landscape the reaction is subd
fusion limited. The first step was to identify simple fixe
points of the valley distribution RG equation, which corr
spond — for a given reaction process described by a tra
tion matrix — to possible asymptotic dynamical states. Ea
of these states is characterized by fixed fractionspk* for each
specie, the physical picture being the following. At tim
scale G5T ln t the system consists of a set of success
renormalized valleys, which can be either empty, with pro
ability p0”* , or contain a particle of speciek, with probability
pk* . The separation between particles grows as the cha

teristic length l̄ (t);G2, and thusnk(t);pk* /(T ln t)2. The
decay of concentration, when compared to the single part
diffusion length, leads us to define universal amplitud
which we obtained exactly. Also, from the exact statistic
independence of the successive valley lengths, the distr
tion of intervals between particles~domains! was derived
~and compared with some pure case results!.

To confirm that a given fixed point is indeed a
asymptotic state, actually reached by the system at la
time, it is necessary to study its linear stability. We have th
obtained analytically the spectrum of stability eigenvalu
around any simple fixed point, as a function of the react
transition matrix, thereby solving the stability problem. T
convergence towards these asymptotic states~i.e., the attrac-
tive RG fixed points! was studied. The leading convergen
towards these asymptotic states was found to be generic
as upk(t)2pk* u;(T ln t)2F with a nontrivialF solution of a
hypergeometric equation~with, in addition, an amplitude pe
riodic in ln t in the case of complex eigenvalues!. In some
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cases, corresponding toF51`, the convergence is faster a
a power law in time with nonuniversal exponents depend
on details of the initial model.

Eigenvalues corresponding to unstable fixed points, wh
were also determined, are of particular interest for reacti
which lead to several distinct dynamical phases~i.e., several
possible asymptotic states!. The transitions between differen
dynamical phases being controlled by such unstable
fixed points, we have thus obtained the corresponding crit
exponents. As an example, a process with a nontrivial ph
diagram was studied.

We have also studied persistence properties associat
a given asymptotic state. As in pure systems, where it
originally defined, persistence can be studied for vario
types of patterns~single particles, domains, etc.!. Remark-
ably, for the disordered models at hand we are able to de
a much largerset of exact results than exists at present
the corresponding pure systems.

We have first obtained, for a generic process, the de
exponentu for the probability of no crossing of a given poin
by single particle trajectories. As noted in@59#, in a disor-
dered system, persistence of thermal averages can be
different from single particle persistence. Thus we have a
computed the probability of no crossing of a given point
thermally averaged packets, which yields the decay expo
ū. The properly generalized persistence exponents assoc
to n crossings have been defined, and computed. Next,
have characterized the statistics of domains, which can
appear or merge as time increases. Restricting, for simplic
to the processA1A˜0” or A with probabilities (r ,12r ), we
have obtained exactly the exponentsd(r ) andc(r ) charac-
terizing the survival up to timet of a domain without any
merging or with mergings, respectively. We have also int
duced new exponents which similarly characterize the sta
tics of the coalescence of particles. We have then comp
them, namelydA(r ) and cA(r ), characterizing the surviva
up to timet of a particleA without any coalescence or wit
coalescences, respectively.

We have found these new exponents as solutions of
pergeometric equations. For comparison, the only kno
analytical result in the pure case is for the exponentupure(r )
for the process~4!. A surprising outcome was that sever
exact exponents of the model with disorder were found to
numerically very close, for all values ofr, to some exponents
for the pure system, although they are associated to a c
pletely different diffusion length@ l pure;At while l̄ (t)
;(T ln t)2#. Indeed we found thatū(r )' 1

2 upure(r ) although
they are definitely distinct, and furthermore thatc(r )
'cpure(r ) and d(r )'dpure(r ), where cpure(r ), dpure(r ) —
not known analytically — are extracted from the numeric
simulation of@46#. The agreement in relative values is bet
than about 1% for allr. It may be that this observed numer
cal coincidence could be traced to the exact statistical in
pendence of valley lengths in the disordered problem, w
the so-called ‘‘independent interval approximation’’ gives
reasonable approximation in the pure case~but, surprisingly,
poorer than the one provided by these new exponents!. This,
however, is far from an explanation and further investigat
may be of interest.

The effect of additional disorder in the reaction rates w
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also discussed. In a simple case it was found to be marg
and thus yield nontrivial modifications, continuously varyin
with the disorder distribution. The question of whether th
result is stable with respect to corrections resulting from
real dynamics or from disorder with shorter correlati
length remains to be further investigated

Although we have not considered explicitly branchin
BARW processes, with additional creation of particles, it
clear that for at least some of them the physics should no
qualitatively too different from the one obtained here. I
deed, since in Sinai disorder particles are essentially confi
to the bottom of large renormalized wells, as long as
process is such that particles are not created out of
vacuum and that the annihilation reactions are sufficien
maintain the number of particles small when at local equil
rium in a well, the reaction can be treated very similarly v
RSRG as for the model studied here. We have thus cha
terized a broad set of reaction diffusion models with dis
der.

Finally, it is worthwile to mention that we have also ide
tified cases which clearly require a more complicated ana
sis going beyond the present paper. For instance, we h
given an example of a marginal reaction, which require
nonlinear stability analysis. Also, we have given an exam
of a cyclic reaction for which all simple RG fixed points a
shown to be unstable. The question of the determination
the true asymptotic states of this reaction is thus still op
Another interesting, and maybe related, question is whe
reactions with a large enough number of species, which
lead to chaotic attractors in pure cases@12,13#, will also lead
to chaotic behavior in the presence of disorder.
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APPENDIX A: AUXILIARY VARIABLE FOR
VALLEYS

In this appendix we study auxiliary variables~m! associ-
ated to bonds that evolve upon decimation as follows. C
sider the decimation of bond~2! in Fig. 2: the two valleys
corresponding to bonds (1,2) and (3,4) and containing,
spectively, the speciesk1 and k2 merge, and the speciek1
jumps to the bottom of valley~3,4! and thus goes over th
bond ~2! and ~3! to react there with the speciek2. It is thus
natural to consider an auxiliary variablem which, upon deci-
mation of the barrierF385F11F32G, evolves with the gen-
eral rule

m385dk1
m11bk1

m21ak1
m3 , ~A1!

where the coefficients (ak ,bk ,dk) depend on the speciek
which diffuses upon the corresponding decimation.

We now write the valley RG equation fo
Pk

G(h,h8,m,m8):

@G]G2~11h!]h2~11h8!]h822#Pk
G~h,h8,m,m8! ~A2!



f

th

io

w

to

ing

.

ng

ved

PRE 60 1235REACTION DIFFUSION MODELS IN ONE DIMENSION . . .
5Wk1 ,k2

k E
m1 ,m18 ,m2 ,m28

~A3!

3@Pk1

G ~h,•,m,m18!* h8Pk2

G ~0,•,m2 ,m28!

3d~m82ak2
m182bk2

m22dk2
m28! ~A4!

1Pk1

G ~•,0,m1 ,m18!* hPk2

G ~•,h8,m2 ,m8!

3d~m2dk1
m12bk1

m182ak1
m2!]. ~A5!

Integrating this equation over them variables one recovers o
course the specie valley RG equation~15!.

We now define the first moment:

Gk
1~h1 ,h2!5E

m1 ,m2

m1Pk~h1 ,h2 ,m1 ,m2!, ~A6!

Gk
2~h1 ,h2!5E

m1 ,m2

m2Pk~h1 ,h2 ,m1 ,m2!. ~A7!

Since we are looking at the symmetric case, we have
Gk

2(h1 ,h2)5Gk
1(h2 ,h1). We can thus write the following

closed equation forGk
1(h1 ,h2):

@G]G2~11h1!]h1
2~11h2!]h2

22#Gk
1~h1 ,h2! ~A8!

5Wk1 ,k2

k @Gk1

1 ~h1 ,• !* h2
Pk2

~0,• !

1ak1
Pk1

~•,0!* h1
Gk2

1 ~•,h2! ~A9!

1bk1
Gk1

1 ~0,• !* h1
Pk2

~•,h2!

1dk1
Gk1

1 ~•,0!* h1
Pk2

~•,h2!]. ~A10!

In the asymptotic state we use the fixed point solut
Pk* (h1 ,h2)5pk* e2h12h2, and write Gk

1(h1 ,h2)
5e2h12h2gk(h1 ,h2) and obtain the equation for the ne
function gk :

G]Ggk~h1 ,h2!5@~11h1!]h1
2h1

1~11h2!]h2
2h2#gk~h1 ,h2! ~A11!

1Wk1 ,k2

k S pk2
* E

0

h2
gk1

~h1 ,• !

1pk1
* ak1

E
0

h1
gk2

~•,h2! ~A12!

1pk2
* bk1

E
0

h1
gk1

~0,• !

1pk2
* dk1

E
0

h1
gk1

~•,0! D . ~A13!

Since them variable is associated to bonds, it is natural
look for solutions where the functiongk(h1 ,h2) is a func-
tion of h1 alone. We thus try solutions of the form
at

n

gk
G(h1 ,h2)5Gcgk(h1), where the exponentc characterizes

the scaling of them variablem;Gc.
For this to work we obtain, in terms of the matrixM

defined in Eq.~22!, the necessary condition

gk~h!5Wk1k2

k pk2
* gk1

~h!5Mk,k1
gk1

~h! ~A14!

together with the differential equation forgk(h):

05@~11h!]h2h2c#gk~h!

1~Mk,k1
dk1

1Wk1 ,k2

k pk2
* ak2

!E
0

h
gk1

~• !

1Mk,k1
bk1

gk1
~0!h. ~A15!

One can then trygk(h)5pk* c(h), which automatically
satisfies the necessary condition~A14! above~sincepk* is by
construction an eigenvector of theM matrix of eigenvalue 1!,
and then the second equation gives the conditions involv
two numbersl1,2,

Mk,k1
pk1
* ~dk1

1ak1
!5l1pk* , ~A16!

Mk,k1
pk1
* bk1

5l2pk* , ~A17!

together with the differential equation forg(h):

05@~11h!]h2h2c#g~h!1l1E
0

h
c~• !1l2c~0!h.

~A18!

We now give two applications of this general analysis

1. Persistence exponentū

We now study the caseak5bk5dk,0 and dk51 corre-
sponding to the auxiliary variable~A1! needed to compute
the persistence exponentū. Conditions~A16! become

pk* 1Mk,0p0* 5l1pk* , ~A19!

Mk,0p0* 5l2pk* . ~A20!

Since the rates involving the empty state~0! are given by
definition by Wi0

k 5dk,i , we have Mk,05W0,i
k pi* 5dk,i pi*

5pk* . The conditions above are thus satisfied withl151
1p0* andl25p0* and thus the problem reduces to studyi
Eq. ~A18! for g(h):

05@~11h!]h2h2c#g~h!1~11p0* !

3E
0

h1
g~• !1p0* g~0!h1 . ~A21!

Differentiating with respect toh one gets

05~11h!]h
2g~h!1~12f2h!]hg~h!1p0* @g~h!1g~0!#

~A22!

with the boundary conditiong8(0)5cg(0). Thesolution of
this confluent hypergeometric equation that is a well beha
solution at infinity~i.e., not growing exponentially! reads



et
s
ti

tly

s

w

d

po

-

o-
come
er in

f
in

hat

:

ter-
the

-

o-
:’’

1236 PRE 60PIERRE Le DOUSSAL AND CE´CILE MONTHUS
g~h!5g~0!S 2
U~2p0* ,22f,11h!

U~2p0* ,22f,1!
21D . ~A23!

The boundary condition ath50 then leads to the following
equation for the exponentc governing the scaling of them
variablem;Gc, as a function ofp0* :

U8~2p0* ,22c,1!5
c

2
U~2p0* ,22c,1!. ~A24!

Using functional relations of the confluent hypergeom
ric functionsU, we finally obtain that the fraction of site
that have never been crossed by any particle in the effec
dynamics decays asm/ l Ḡ;Gc22;( l Ḡ)2 ū, where the persis-
tence exponentū5(22c)/2 is a solution of the equation

ū U~2p0* ,2ū,1!5U~2p0* ,2ū11,1!. ~A25!

2. Number of thermal packets seen by a given point

We introduce the bond variablem(n) which is the num-
ber of sites on the bond which have been crossed exacn
times by a particle~any nonempty state! in the effective dy-
namics~i.e., by a thermally averaged trajectory!. It satisfies
upon decimation of bond~2! with the same conventions a
above:

m38~n!5m1~n!1m2~n21!1m3~n21! if k1Þ0,
~A26!

m38~n!5m1~n!1m2~n!1m3~n! if k150. ~A27!

Introducing the generating functionm(z)5(n50
n51`m(n)zn,

the rule becomes

m38~z!5dk1
~z!m1~z!1bk1

~z!m2~z!1ak1
~z!m3~z!

~A28!

which, for fixed z, is the same rule as above with no
ak(z)5bk(z)5dk,01z(12dk,0) and dk51. Conditions
~A16! become

~11z!pk* 1~12z!Mk,0p0* 5l1pk* , ~A29!

zpk* 1~12z!Mk,0p0* 5l2pk* ~A30!

and thus using againWi0
k 5dk,i these conditions are satisfie

with l1(z)511z1(12z)p0* and l25z1(12z)p0* , i.e.,
we only need to perform the substitutionp0*˜z1p0

2(12z)
in the previous solution to obtain the equation for the ex
nent ū(z) governing the scaling of the ratiom(z)/ l Ḡ

;( l Ḡ)2 ū(z):

ū~z!U„2z2p0~12z!,2ū~z!,1…

5U„2z2p0~12z!,112ū~z!,1…. ~A31!

The probability that a given point has been visited byn
thermally averaged trajectories up to timet is thus obtained
in the rescaled variableg5n/ ln G as
-

ve

-

prob~g!;~ l Ḡ!2 ū(g). ~A32!

It decays with the exponentū(g) obtained through the Leg
endre transform

2ū~g!52ū„z* ~g!…1g ln„z* ~g!…, ~A33!

wherez* (g) is the solution of 2@ ū(z)/dz#1g/z50.
One can compute simply the valuega that g takes with

probability 1 as G˜`. It is given by ū(ga)50
5 ū(g)/dgug5ga

. This givesga522@ ū(z)/dz#uz51, and thus

differentiating Eq.~A31! with respect toz and takingz51
we finally get

ga5~12p0* !
U1~21,1,1!

U~21,0,1!/22U2~21,1,1!
5

4

3
~12p0* !,

~A34!

where we have used the notationsU1(a,b,z)[]aU(a,b,z)
andU2(a,b,z)[]bU(a,b,z).

APPENDIX B: THE PARTICULAR CASE
OF ‘‘ASSOCIATIVE PROCESSES’’

It turns out to be useful to introduce the notion of ‘‘ass
ciative processes:’’ these are processes such that the out
of a sequence of reactions does not depend on the ord
which it was performed, i.e., such that the ratesW satisfy

Wp1a
k Wp2p3

a 5Wp2b
k Wp1p3

b ~B1!

for all k,p1 ,p2 ,p3 ~contraction overa and b is implied!.
This means that the probability of (p2p3)p15k is identical
to the probability of (p1p3)p25k ~ab denotes the result o
the reaction ofa andb). For example, the process defined
Eq. ~4! is associative.

An important property of associative processes is t
their matrixM ~22! satisfies

M25M ~B2!

and thus the eigenvaluesma have only two possible values
0 or 1.

For the RG, these processes have also the following in
esting property: the subspace of valley distributions of
form

Pk
G~h1 ,h2!5Wr 1 ,r 2

k Pr 1

G ~h1!Pr 2

G ~h2! ~B3!

is conserved by the RG~15!, provided that the bond distri
bution Pk

G(h) satisfies the bond RG equation

G]GPk
G~h!5@~11h!]h11#Pk

G~h!

1Wk8,k3

k Wk1 ,k2

k8 Pk2

G ~0!Pk1

G ~• !* hPk3

G ~• !.

~B4!

The bond RG equation~B4! can in fact be interpreted to
characterize the following modified reaction diffusion pr
cess, which we call ‘‘the bond-reaction diffusion process
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one associates to the bottom of each bond~i.e., the point of
lowest energy! a specie in one of the possible ‘‘states’’ an
defines probability distributionsPk(z) for the bonds. We
consider two consecutive valleys made with the bonds~1,2!
and ~3,4!. Initially the bonds~1,2,3,4!, respectively, contain
the speciesk1 ,k2 ,k3 ,k4. Upon decimation of bond~2!, the
bond diffusion process is defined as follows in three steps~i!
First the two speciesk1 ,k2 on bonds~1,2! react to give an-

other statek8 with the ratesWk1 ,k2

k8 . ~ii ! The new speciek8

diffuses towards the bottom of the bond 3.~iii ! The species
(k8,k3) react at the bottom of bond 3 to give a new spec

k38 with the ratesW
k ,k

k38 . For comparison, it is useful to reca

8 3
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the corresponding real dynamics with valleys: initially, th
valley (1,2) contains some speciesk8, the valley~3,4! some
speciesk9. Upon decimation of bond~2!, the speciesk8 dif-
fuses towards the bottom of the valley~3,4! and reacts there
with k9 to give k with probability Wk8,k9

k . Thus, in the end,
the physical content~the specie! of the renormalized valley
for the bond-diffusion process isk with probability

Wk
38 ,k4

k
W

k8,k3

k38 , whereas in the original valley process, the fin

result isk with probability Wk8,k9
k Wk3 ,k4

k9 . The two descrip-

tions are thus equivalent in that sense only if the rates sa
the associativity condition~B1!.
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